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Program 

Monday, February 24 
900 a.m. - 12:15 p.m. 

Session I Physical and Chemical Properties of Dust 
Chairman: Alan Peterfreund 

J. Tillman 
Martian atmospheric dust over three years as inferred from Lander meteorology measurements 

T. Martin 
lnfrared opacity of dust in the Mars atmosphere 

R. Kahn 
The vaying properties of martian aerosols 

E Jaquin 
The vertical distribution of aerosols during the growth phase of a global dust storm 

J. Gooding 
Condensation of frosts on martian dust particles 

D. Colburn, J. B. Pollack, and R. M. Haberle 
Influence of dust on water condensation at Mars 

A. Banin 
Constraining Mars-dust mineralogy on the basis of Viking biology simulations and Mars spectral reflectance 

R. Morris, H. V. Howard, Jr., D. G. Agresti, and J. A. Newcomb 
Spectral properties of “dust”produced in the d y  valleys of Antarctica; A martian analog? 

Monday, February 24 
1:30 - 430 p.m. 

Session Ik Atmospheric Dust Transport and Redistribution 
Chairman: Robert Haberle 

L. Martin and P. B. James 
Dust clouds of a different nature 

P. James and L. J. Martin 
Znterannual variability in Mars’ South Polar recessions and possible correlations with major duststorms 

I D. Paige 
Dust in the spring season polar atmospheres: A north-south comparison I 

J. Barnes and J. L. Hollingsworth 
Implications of a polar warming for dust transport into the North Polar ra*on of Mars 

R. Haberle I 

1 The development of global dust storms on Mars: The role of the mean meridional circulation 
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R. Zurek and R. M. Haberle 
Cross-equatorial transport during a martian great dust storm 

J. Pollack, R. M. Haberle, J. Barnes, M. Schlesinger, R. Zurek, C. B. Leovy, J. White, J. Schaeffer, and 
K. Bilski 

Influence of dust on the general circulation of the martian atmosphere 

Tuesday, Febnmy 25 
900 a.m. - 12:15 p.m. 

Session IIk Dust Erosion, Deposition, Sources, and Sinks 
Chairman: Peter Thomas 

R. Greeley 
Toward an understanding of the martian dust cycle 

R. Anidson 
On the rate of formation of sedimentary debris on Mars 

H. Moore 
Martian miniature landslides, Mutch Memorial Station 

J. Zimbelman 
Physical properties of aeolian features in the Elysium-Amazonis rw-on of Mars 

B. Jakosky and P. Christensen 
Are the Viking Lander sites representative of the surface of Mars? 

P. Christensen 
Surface albedo variations on Mars: Implications for yearly dust deposition and removal 

S. Lee 
Viking observations of regional sources and sinks of dust on Mars 

L. Roth, R. S. Sunders, and T. W. Thompson 
Radar reflectivity of a variable dust cover 

T. Thompson, R. E Jurgens, L. Roth, and L. Robinett 
Possible Goldstone radar observations of Mars: 1986 and 1988 oppositions 

Tuesday, February 25 
1:30 - 430 p.m. 

Session : General Discussion/Overview/Questions 

(1) How many dust components are there on Mars, and what are their properties? 
(Discussion Leader: Alan Peterfreund) 

(2) How does the global atmospheric circulation affect dust redistribution? 
(Discussion Leader: Robert Haberle) 

(3) How do dust sources and sinks vary with time? 
(Discussion leader: Peter Thomas) 
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Summary of Technical Sessions and Discussions 

A MECA workshop, “Dust on Mars II,” was sponsored by NASA through the Lunar and Planetary 
Institute and hosted by Arizona State University on February 2425,1986. Following the recommendations 
of the participants in the previous MECA “dust” workshop (held at ASU on February 4 5 ,  1985), the 
goal of this workshop was to discuss the following questions: 

(1) How many components of dust are there on Mars, and what are their properties? 
(2) How is dust ejected from the surface into the atmosphere? 
(3) How does the global atmospheric circulation affect the redistribution of dust? 
(4) Are there sources and sinks of dust? If so, how do they vary with time? 

Forty-three people attended the meeting and engaged in the discussion sections; of these, twenty-four 
presented summaries of their dust-related research. 

The first workshop session considered the physical and chemical properties and the distribution (both 
temporal and spatial) of dust and condensates. Several “observational” presentations focused on detailed 
analyses of Viking data. Pressure data recorded over four martian years at Viking Lander 1 and two 
years at Viking Lander 2 have been studied by J. Tllman with particular attention to the major transient 
events related to two global dust storms in 1977 (Year 1) and one in 1982 (Year 4). The 1982 event 
was similar in season to the first 1977 storm (L, -2000) but was more intense than this storm, appearing 
instead to be similar to the second 1977 storm. The 1982 storm was noted as having a unique pressure 
signature, suggesting a second surge of intense activity a week after the initial change in pressures was 
noted. T. Martin presented a dust opacity history based on a global data analysis using the 7, 9, and 
15 pm data collected by the Orbiters’ Infrared Thermal Mappers (IRTM). The resultant maps of opacity 
depict the spatial and temporal variations of atmospheric dust loading throughout the Viking missions. 
Detailed maps during the 1977 dust storm season suggest large local variability of opacity in many areas. 

Evidence for H,O ice in the Mars atmosphere has been inferred from a variety of optical observations 
using the Landers and Orbiters. Limb observations show that a detached haze fluctuates in height and 
opacity with time and location. R. Kahn modelled the properties of these hazes during the non-dust storm 
periods with consideration of mean optical depth, condensation level, mean particle size, and eddy diffusion. 
Correlation of the cloud height with MAWD column water vapor abundance implies that water controls 
the location of the cloud base. The mean particle sizes increase as condensation heights decrease in 
such a way that the average fall time is always about 1/4 day. F. Jaquin reported on analysis d the 
limb observations made by the Orbiter cameras over three Mars years. Profiles of reflectance vs. elevation 
above the surface show the buildup of dust with height as a function of time and latitude. During the 
1977 dust storm season, continuous haze up to 50 km altitude is seen in the northern hemisphere with 
a weak detached haze above that. The detached haze (probably condensates) is better defined in the 
southern hemisphere. 

The second set of speakers reported on “laboratory and theoretical” results. J. Gooding has been 
performing experiments and modelling the heterogeneous nucleation of condensates on mineral grains. 
Favorable conditions for condensation appear to be related to crystallographic compatibility (with respect 
to structure and number of “active” sites) and the nature of chemical bonds. Details for mineral classes 
and for given minerals, especially clays, show the complexities of the nucleation process as a function 
of condensate type. Furthermore, as nucleation occurs the initial condensates will change conditions 
associated with subsequent nucleation. D. Colburn discussed the influence of dust on water condensation 
using Lander optical depth measurements. Both seasonal and diurnal effects appear to be factors in the 
amount of water condensation. Also, most condensation appears to occur aloft as opposed to near-surface, 
and is strongly related to dust abundance. Simulating results from the labeled-release biology experiment 
aboard the Landers, A. Banin inferred properties of martian dust. Smectite minerals (montmorillonite and 
nontronite) that were ion-modified were found to best simulate the kinetic results of the biology experiment. 
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The ion-modification served to exchange calcium and sodium ions with iron. This modification is consistent 
with Lander chemical analyses. These experiments suggest that: (1) the pH of martian soil is less than 
4.5; (2) CaC03 probably cannot be in soil at concentrations larger than -1.0%; (3) montmorillonite is 
apparently essential for causing rapid decomposition on clay surfaces. According to results presented by 
R. Morris, the spectra of martian bright regions suggest that “dust” produced in the dry valleys of Antarctica 
may be a reasonable martian analogue. Weathering on Mars, assuming analogous processes to those 
in Antarctica, results in more highly oxidized material, but in general appears to be similar to that for 
ferric products that were studied. Further, the presence of hematite as a component of martian dust 
is strongly suggested. 

The second workshop session addressed topics of atmospheric dust transport and redistribution. L. 
Martin led off the session discussing equatorial dust clouds imaged by Viking that differed from other 
dust clouds because of their persistent association with a small canyon. Downslope katabatic-type winds 
may be responsible for the clouds’ origin; in some cases they appeared to flow into the canyon floor. 
The potential of the telescopic record for revealing interannual variation in the CO, cycle was the subject 
of the presentation given by P. James. The signature of this variabfity appears as differences in the retreat 
rate of the south polar cap (readily observed during favorable oppositions). Comparison of data for the 
1956, 1971, 1973, and 1977 dust storm years shows some v a r i a b ~  with the cap retreating slower than 
the median in 1971 and 1977 and faster than the median in 1956 and 1973. The extent to which this 
variabdity would affect pressure variations is evidently small, however, given the high degree of repeatabhty 
in the seasonal pressure data from the Lander sites. D. Paige discussed his analysis of IRTM data at 
the north and south poles during the spring season. By constraining a radiative equilibrium model he 
developed to reproduce the brightness temperatures in the various IRTM channels, he concluded that 
dust in both polar regions is simiiar in composition to that observed in the tropics (the so called “Toon- 
Pollack” dust). He also found that unless the dust was confined to the lowest 5 km, it was not possible 
to reproduce the observed 15 micron brightness temperatures. This problem was even more difficult in 
the north where additional cooling, perhaps due to water ice, is needed. 

J. Barnes focused attention on the transport implications of the warming of the north polar atmosphere 
during the second global dust storm of 1977. Based on models that follow the actual motion of air parcels, 
the observed warming must be accompanied by sinking motion; to conserve mass, poleward transport 
from lower latitudes is required. Barnes also discussed other modelling that implies that vertically-propagating 
forced stationary waves may play an important role in the heat budget of the polar atmosphere during 
global dust storms. In the next paper, R. Haberle presented a mechanism for interannual variabhty of 
global dust storms. His nearly inviscid zonally-symmetric circulation model suggests the following scenario: 
First, global dust storms transport dust into the northern hemisphere. This dust is then available for raising 
by baroclinic waves in the following years. During the post-dust-storm years the cross-equatorial Hadley 
circulation is therefore weakened due to heating by dust suspended in its descending branch. When the 
supply of dust is exhausted, the full strength of the Hadley circulation, and the likelihood of global dust 
storms, is restored. R. Zurek then spoke about how tidal forcing of the mean meridional circulation may 
break up the otherwise smooth structure of the cross-equatorial Hadley cell. During relatively dusty periods, 
tides produce significant accelerations of the zonal and meridional wind fields, and these accelerations 
have considerable vertical structure. When included in Haberle’s 2D model, several vertically-stacked Hadley- 
type cells were produced. Zurek suggested that by changing the structure of the Hadley circulation, the 
tides could effectively limit the flux of dust into the northern hemisphere during a global dust storm, 
explaining the decay patterns seen at the Lander sites. Completing the “theoretical” presentations of this 
session, J. Pollack gave a progress report on the Mars general circulation model (GCM) and presented 
some preliminary results. Work on the GCM during the past several years has focused on including dust 
as a radiatively active constituent, generalizing the model to an arbitrary number of layers, and improving 
the numerical methods for calculating infrared fluxes. All of these changes have been implemented and 
tested, and the current effort has shifted to determining the model’s performance in a variety of configurations 
and examining how dust affects the behavior of large-scale atmospheric eddies. 

i 

I 
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During the final session of the workshop, the participants turned their attention to the study of dust 
sedimentation and erosion on Mars. The research that was discussed is being conducted in three general 
areas: photointerpretation of sedimentary and erosional features, surface properties determined from thermal 
inertia, albedo, and radar data, and laboratory and theoretical work on the processes involved in wind 
transport of dust. R. Greeley tied together the various laboratory and theoretical studies applicable to 
the martian dust cycle. In particular, the continuing question of the role of volatiles in any aggregation 
of dust particles and in ejection of dust from the surface was considered. R. Arvidson presented results 
of a study of the morphology and statigraphy of south polar pitted and layered terrains that indicates 
deposition in two very different phases extending over about half of martian history. The radically different 
layered and unlayered pitted deposits suggest substantial differences in sedimentary regimes. At another 
size scale, H. Moore reported that the morphology of small landslides at the VL1 site is diagnostic of 
surface layers of .very low cohesiveness that are probably recent aeolian deposits. Slope failure of 
layers may be an important mechanism for producing a surface that is not in equilibrium with ma ian 
wind regimes, thereby enhancing the possibility of aeolian erosion. 

Several specific regions of the planet were discussed in detail. The physical properties of aeolian features 
in the Elysium-Amazonis area were examined by J. Zimbelman. Analysis of the thermal inertia of wind 
streaks in the region suggests a long-lived movement of fine to medium sand-sized materials in the observed 
depositional dark streaks and possible dust deposits of significant thickness accumulating in bright streaks. 
B. Jakosky reported on a study relating the characteristics of the Lander sites to the global data on 
thermal inertia, albedo, and color; the sites apparently do not match the general planet-wide trends in 
these data sets. In particular, the VL1 site is intermediate between bright areas assumed to accumulate 
dust and those dark areas that are thought to be swept relatively clear. P. Christensen discussed the 
albedo variation of several areas on the planet using the IRTM albedo channel. He found that northern 
hemisphere dark regions showed a long period of progressive dust removal after global dust storms, while 
southern hemisphere dark regions show a rapid return to pre-storm albedos. S. Lee investigated regional 
sources and sinks using IRTM albedo data and Orbiter images. The patterns of temporal changes indicate 
that Syrtis Major, through much of the year, acts as a source region for dust redeposited in neighboring 
Arabia. In the Solis Planum region, removal of dust is restricted to periods of major dust-storm activity. 

The ability of radar to detect seasonal variability in surface dust cover was examined by L. Roth. A 
theoretical study of radar reflectivity as a function of dust layer thickness concludes that time-variable 
reflectivity data would be consistent with significant changes in dust layer thickness only under very restricted 
conditions of layer geometry and continuity. The session was concluded with T. Thompson’s review of 
future opportunities for radar observations of Mars. The 1986 and 1988 oppositions will greatly extend 
the southern hemisphere coverage available from previous years, while upgrades in the Goldstone radar 
should significantly improve resolution and allow both X- and S-band observations. 

The final afternoon of the workshop consisted of an open discussion of the major questions posed 
during the preceding two days. Much of the discussion centered around the possibilities for interdisciplinary 
cooperation. For example, observations of regional dust sources and sinks, and tracking the location, 
timing, and growth of local and great dust storms, should provide useful input and constraints for atmospheric 
circulation models. The mineralogical properties of dust may greatly influence the formation of condensates; 
hence, knowledge of such properties may play major roles in modelling the production of atmospheric 
hazes and polar deposits. It was agreed that defining the frequency and characteristics of local and “global” 
dust storms, the distribution (temporal and spatial) of dust on the surface, and the physical and chemical 
properties of dust along with inclusion of dust related effects in atmospheric circulation models, are all 
areas‘ in which continued research and communication among the various interested groups would be 
fruitful for the entire community. The research discussed at the workshop is clearly moving in the direction 
of posing questions for the Mars Observer mission, while showing that Viking Orbiter and Earth-based 
data provide an excellent basis for formulation of Mars Observer experiment strategies. 

Fh 
=+ 
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ON THE RATE OF FORMATION OF SEDIMENTARY DEBRIS ON MARS; Raymond 

E. Arvidson, McDonnell for the Space Sciences, Department of Earth and 
Planetary Sciences, Washington University, St. Louis, MO 63130 

We now have enough information to place rather meaningful constraints on 
the current rates of aeolian redistribution of fine grained debris on Mars. 
For example, from the three years of Viking Lander 1 observations, typical 
values of sediment redistribution are micrometers per year, although 
centimeters of loose, disturbed material were removed during a brief interval 
in the third year (1). 
observed, either by tracking changes in morphologies o r  by tracking changes 
in rock photometric properties. 
pristine-looking, small bowl-shaped craters at the Lander 1 site suggests a 
rate of rock breakdown and removal of only meters over the lifetime of the 
surface. Thus, averaged over the lifetime of the Chryse Plains, rock 
breakdown and removal has been meters per billions of years, orders of 
magnitude lower than the micrometers per year for soils (2). 
equatorial regions of Mars likewise preserves ancient surfaces, with craters 
even at small sizes seemingly in production. 
removal over the equatorial terrains has been quite small for much of 
geological time. Even the fretted terrains have probably been inactive for a 
long while, considering that the crater abundances in much of fretted terrain 
are second in abundance only to the cratered terrains (3). 
fretted areas seem to be embayed by younger deposits (4) o r  to be in areas of 
relatively recent tectonic activity, such as the chaotic terrains. 
extent, most of the equatorial terrains of Mars have been subjected to very 
low erosion rates, significantly less than the debris redistribution rates 
witnessed by Viking Lander 1. Thus, as noted by (2), differential aeolian 
erosion on Mars is a major geological process, with debris deposits 
accumulating and eroding to depths of hundreds of meters over geological 
time, while rock breakdown has been occurring in most regions at vanishingly 
small rates. Given the low rates of production of new debris, one is forced 
to conclude that Mars has had a decidedly non-linear history of debris 
production. In particular, most sedimentary debris must have been produced 
relatively early, perhaps in the first billion years of geological time. 
Impact cratering, production of volcanic ash, and chemical corrosion may all 
have been important debris-forming processes. Given that the mineralogy of 
martian debris has apparently not come into equilibrium with the present 
ambient conditions (5), we may have some chance of deciphering the relative 
importance of various debris forming processes. 
Mars Observer Imaging Spectrometer data show a dominance of palagonitic 
materials, then early volcanism would be indicated. 

Rates of erosion of rocks were too small to be 

Consideration of the large number of 

Most of the 

Thus, rock breakdown and 

The younger 

By areal 

For example, if analyses of 
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CONSTRAINING MARS-DUST MINERALOGY ON THE BASIS OF VIKING BIOLOGY 

SIMULATIONS AND MARS SPECTRAL REFLECTANCE. 
A. Banin, Hebrew University, P.O. Box 12, Rehovot, Israel 

Among the prime, unresolved and o f t e n  debated issues r e l a t e d  t o  Mars is 
t h e  q u e s t i o n  of t h e  c o m p o s i t i o n  and p r o p e r t i e s  o f  i ts  f i n e ,  c ius ty  s u r f a c e  
mater ia l s .  Unfortunately,  no d i r e c t  and d e f i n i t i v e  mineralogical  ana lys i s  has 
been done on t n e  s o i l  a n d  d u s t  of Mars a s  y e t .  V a r i o u s  i n d i r e c t  approaches  
were used, however, t o  a r r i v e  a t  Mars dus t  mineralogy. These included direct 
chemical analyses,  criemical modeling, s imula t ions  of the chen ica l  i n t e r a c t i o n  
w i t h  water  and  s o l u t e s ,  and a m u l t i t u d e  of s p e c t r o s c o p i c  o b s e r v a t i o n s  from 
Earth,  orbiters and landers.  I n  the  fo l lowing  we w i l l  b r i e f l y  review these, 
s p e c i f i c a l l y  emphas iz ing  t h e  c h e m i c a l  s i m u l a t i o n s  and p r e s e n t  our  c u r r e n t  
thinking on t h e  mineral  composition of  t h e  Martian dust. 

Chemical c o m p o s i t i o n  of the M a r t i a n  f i n e  surface material: Q u i t e  
probably, t h e  most d i r e c t l y  r e l a t e d  ava i l ab le  evidence regarding soil  and dus t  
minera logy ,  is t h e  i n o r g a n i c  c h e m i c a l  a n a l y s i s  ( I C A )  o b t a i n e d  by X-ray 
f l u o r e s c e n c e  a n a l y z e r s  aboard  t h e  Vik ing  l a n d e r s .  The a n a l y s e s  have  shown 
e l e m e n t a l  abundances,  (g iven  a s  o x i d e s ) ,  of 49-45X SiO,,  '7-7.51 A$O,, 1'7-19% 
Fe2U3 5-72 MgO, 5 6 %  CaO, 0.4-0.7% T i 0 2 ,  t races  of K ,  6-4% SoLt and 0.3-0.9% 
C 1  (1). The chemical composition of the s o i l  i n  the two Viking landing si tes,  
and o f  d i f f e r e n t  s a m p l e s  t a k e n  from each  s i t e ,  was found t o  be s t r i k i n g l y  
s imi l a r .  On the bas i s  of the  chemical da ta ,  s eve ra l  combinations of minera ls  
have been s u g g e s t e d  i n i t i a l l y  (2 ,3 ,4) .  These c h a r a c t e r i s t i c a l l y  c o n t a i n e d  
about 6 0 4 0 %  c lay  minerals  of the  smectite group, mixed w i t h  var ious soluble 
s a l t s  such a s  k i e se r i t e  (MgSO,) and h a l i t e  (NaC1). Sugges ted  a c c e s s o r y  
m i n e r a l s  were: i r o n  oxides(Fe,O,), c a l c i t e  (CaC03), and q u a r t z  (SiO2). 

S i m u l a t i o n  -- of  t h e  Vik ing  Bio logy  e x p e r i m e n t s :  'The Vik ing  Bio logy  
experiments turned out t o  be (and st i l l  are) an important and unique source of  
c h e m i c a l  i n f o r m a t i o n  on Mar t i an  d u s t  and s o i l  because  of t h e  d i r e c t  "wet 
chemistryff t h a t  was conducted on the s o i l  and the  information obtained on the  
in t e rac t ion  of the  Mars minerals  w i t h  water, s a l t s  and organics.  Although no 
c l e a r  evidence f o r  l i f e  was found, t h e  Viking Biology experiments showed t h a t  
t h e  m i n e r a l s  i n  t h e  Mars s o i l  were c h e m i c a l l y  r e a c t i v e  and c a p a b l e  of 
decomposing various organic  acids, c a t a l y z i n g  pho tochemica l  f i x a t i o n  of 
C02/C0,  and r e l eas ing  oxygen upon wet t ing  (5,6). 

The simulation of the  Viking Biology experiments,  conducted between 19'11 
and 1979 gave samewhat d ive r se  results. Levin and h i s  c o l l e a g u e s  r e p o r t e d  
t h a t  t h e  Mars s o i l  a n a l o g s  p rov ided  by t h e  I C A  Team d i d  n o t  s i m u l a t e  t h e  
Labeled Release (LH) Viking experiment (7). On the other hand, Banin and h i s  
colleagues,  using ion-modified clays, succeeded i n  the k i n e t i c  s imula t ions  of 
t h i s  expe r imen t  (8 ,9 ,10) .  The c l a y  modi f ica t ion  by Banin e t  a l .  (11,121 
involved the exchange of calcium and sodium ions,  the primary adsorbed ions  of 
c l a y s  on Ea r th ,  w i t h  i r o n ,  a u b i q u i t o u s  and abundant  e l e m e n t  i n  t h e  M a r t i a n  
soil .  In  addi t ion  t o  affecting t h e  chemical and c a t a l y t i c  p rope r t i e s  of the 
c l a y ,  t h i s  exchange r e su l t ed  i n  a pronounced color  change from g r a y  t o  
reddish-orange ,  making t h e  c l a y  v e r y  s i m i l a r  i n  c o l o r  and  s p e c t r a l  
c h a r a c t e r i s t i c s  t o  the Martian soil (13,141. 

Our de t a i l ed  e x p e r i m e n t a l  s t u d i e s  showed (10,13,14,15)  t h a t  among t h e  
many m i x t u r e s  of clays and var ious s a l t s  whose combinations give elemental  
compositions s i m i l a r  t o  the  Mars so i l ,  only i ron  smectites, and p a r t i c u l a r l y  
montmoril lonite,  reasonably simulated the chemical r e a c t i v i t y  i n  the Viking 
Biology LR experiment. These s imula t ions  showed t h a t  i f  any CO2 was t o  be 
released i n  t he  LR Viking experiment, c a l c i t e  (CaCO,) could not be present  i n  
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t h e  dusty su r face  m a t e r i a l s  a t  concentrat ions higher than about 0.5%, and t h e  
pH of t h e  s o i l  cou ld  n o t  be above ca. 5. 

I n  s e p a r a t e  s i m u l a t i o n  e x p e r i m e n t s ,  Hubbard ( l b ) ,  u s i n g  t h e  mod i f i ed  
c l a y s  of Banin, detected photochemical f i xa t ion  of atmospheric 1 4 C ,  and its 
i n c o r p o r a t i o n  i n t o  o r g a n i c s  i n  t h e  s o i l .  T h i s  pho tochemica l  f i x a t i o n  was 
s i m i l a r  t o  t h e  o b s e r v a t i o n s  on Mars i n  t h e  Vik ing  P y r o l y t i c  R e l e a s e  (PR) 
experiment. Other candidates  for Mars soil components which were suggested 
u s i n g  Vik ing  Biology r e s u l t s  a s  t h e  g u i d e l i n e  were ca rbon  subox ide  (1'1) and 
var ious  mafic s i l i c a t e  minerals (18). 

S p e c t r o s c o p i c  e v i d e n c e :  E a r t h - b a s e d  v i s i b l e  and n e a r  i n f r a r e d  
reflectance d a t a  were accumulated through te lescopic  measurements of McCord's 
group i n  Hawaii (19,201. Since t h e  terminat ion of the  Viking extended mission 
i n  1978, t h i s  s p e c t r a l  information became the  major i f  not t he  sole source of 
new experimental  da ta  on Mars soils mineralogy. The Mars r e f l ec t ance  spectrum 
was found to  show opaci ty  and band sa tu ra t ion  (no r e f l ec t ance )  i n  t h e  near UV- 
v i s i b l e  r a n g e  (0.3-0.5 pm w i t h  i n c r e a s i n g  t r a n s p a r e n c y  ( i n c r e a s i n g  
r e f l ec t ance )  i n  t h e  long-wavelength v i s i b l e  and n e a r  i n f r a r e d  r a n g e  (0.5-0.9 
v m ) .  However, it was l a c k i n g  any c l e a r  and pronounced a b s o r p t i o n  f e a t u r e s  
t h r o u g h o u t  t h i s  range.  S p e c t r a  of c r y s t a l l i n e ,  pu re  i r o n  o x i d e s  such  a s  
hemat i te  and goe th i t e  were found by Singer (21) and by Sherman e t  a l .  (22) t o  
e x h i b i t  s i g n i f i c a n t  devia t ions  from t h e  Mars r e f l e c t a n c e  spec t rum measured 
from Earth. However, s eve ra l  iron-containing minerals  have been found t o  bear 
s i g n i f i c a n t  s i m i l a r i t y  t o  t h e  Mars r e f l e c t a n c e  spec t rum.  These  i n c l u d e  
amorphous i r o n - s i l i c a  g e l s  (23,241, palagonite (21 ), iron-containing aluminum 
oxy-hydroxide (25), and i ron  sa tu ra t ed  montmoril lonite c l ay  (14). A f e a t u r e  
common t o  a l l  of t h e  candidates  is t h a t  they contain ferric i ron  i n  a matr ix  
of oxy-hydroxide which is not  wel l  c r y s t a l l i z e d ,  or h a s  o n l y  s h o r t - r a n g e  
ordering. Unfortunately,  on the  b a s i s  of the s p e c t r a l  comparison alone, t h e r e  
is y e t  no obvious way t o  choose among t h e  various candidates,  and add i t iona l  
p r o p e r t i e s  and c h a r a c t e r i s t i c s  of t h e  Martian so i l  and its Earth analogs have 
t o  be s tudied i n  order  t o  fu r the r  cons t ra in  the  poss ib le  Martian mineralogical  
composition. 
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IMPLICATIONS 

THE NORTH POLAR REGION OF 
Department of Atmospheric 
OR 97331 

OF A POLAR WARMING FOR DUST "RANSPORT I N T O  
MARS; J . R .  Barnes and J.L. Hollingsworth,  
Sciences,  Oregon State Univers i ty ,  Corva l l i s ,  

The layered  t e r r a i n s  i n  t h e  polar regions of Mars have been widely i n -  
t e r p r e t e d  as records of quas i -per iodic  v a r i a t i o n s  i n  t h e  Mars climate system 
dr iven  by orbital element v a r i a t i o n s  (see, e.g., Pol lack and Toon, 1982) .  
It has been suggested t h a t  t h e  polar laminae i n  t h e  nor th  are being formed 
a t  present  and t h a t  perhaps the bulk of t h e  depos i ted  dus t  and w a t e r  ice is 
t ranspor ted  to  t h e  pole dur ing  g loba l  d u s t  storms (Cu t t s ,  1973; Pollack e t  
a l . ,  19791, which c u r r e n t l y  occur dur ing  t h e  growth phase of the seasonal  
C02 f r o s t  cap. 
t i o n  onto dus t  g r a i n s  would c o n s i t u t e  a very e f f e c t i v e  mechanism f o r  remov- 
ing  t h e  dus t  t o  t h e  su r face  i n  t h e  polar regions.  Paige ( 1 9 8 5 )  carried ou t  
analyses  of Viking IRTM observa t ions  and concluded t h a t  depos i t i on  of d u s t  
d i d  uccur (probably i n  conjunct ion with C02 condensation i n  t h e  atmosphere) 
i n  t h e  region of t h e  nor th  r e s i d u a l  cap dur ing  t h e  winter  solstice ( t h e  sec- 
ond) dust storm of 1977. The magnitude of t h i s  depos i t i on  is unce r t a in ,  
however, Jakosky ( 1 9 8 3 )  and Jakosky and Martin ( 1 9 8 4 )  have argued t h a t  t h e  
t r anspor t  of d u s t  (and water) onto  t h e  nor th  r e s i d u a l  cap during g loba l  d u s t  
storms is i n s i g n i f i c a n t .  

The depos i t i on  of dus t  onto t h e  seasonal  polar cap is also of consider-  
able importance, because of t h e  e f f e c t s  on t h e  polar cap albedo and thus  t h e  
radiation budget of t h e  subliming cap. P d d i t i o n a l l y ,  t h e  d u s t  loading  of 
t h e  polar atmosphere is  s i g n i f i c a n t  because of its e f f e c t s  on the  r a d i a t i o n  
budget of t h e  cap: t h e  enhanced emiss iv i ty  of t h e  atmosphere impl ies  en- 
hanced downward I R  f luxes .  

The i n t e n s e  warming of t h e  polar atmosphere which was observed by t h e  
Viking IRTM during t h e  winter  solstice dus t  storm of 1977 (Martin and Xief- 
fer, 1979; Jakosky and Martin,  1984)  must have been t h e  r e s u l t  of substan-  
t i a l  dynamical t r a n s p o r t s  of hea t  i n t o  t h e  no r th  polar region.  The warming 
a t  t h e  pole ( -50 K i n  magnitude i n  t h e  v i c i n i t y  of t h e  25 lcm l e v e l )  must 
have been produced by compressional hea t ing  associated w i t h  downward - i n  a 
Lagrangian sense  - motion of air  pa rce l s .  An accompanying poleward flow is 
then a l so  implied. Such a Lagrangian motion p a t t e r n  implies  poleward and 
downward t r a n s p o r t  of tracers such as dus t  and water. 

f l o w  model s t rong ly  suggest t h a t  t h e  p l a r  warming could have been induced 
by a forced, v e r t i c a l l y  propagat ing,  p lane tary-sca le  (zonal  wavenumber 1 )  
wave (Barnes and Hollingsworth,  1985) .  The dynamics of such a warming are 
m o s t  c l e a r l y  viewed i n  t h e  so-called transformed Eulerian-mean system, in -  
s t ead  of t h e  t r a d i t i o n a l  Euler ian  one. In  t h e  transformed system, t h e  warm- 
i ng  is produced by downward v e r t i c a l  motions - r a t h e r  than eddy t r a n s p o r t  of 
hea t .  [The transformed Eulerian-mean v e r t i c a l  motion f i e l d  is gene ra l ly  a 
good approximation t o  the  t r u e  Lagrangian-mean v e r t i c a l  motion f i e l d  - un- 
l i k e  t h e  Eulerian-mean v e r i c a l  motion f i e l d . ]  The mean meridional  c i r c u l a -  
t i o n  i n  the  transformed Eulerian-mean system, t h e  so-called r e s i d u a l  mean 
meridional c i r c u l a t i o n ,  is cha rac t e r i zed  by poleward and downward flow i n t o  
t h e  polar i n t e r i o r  during t h e  simulated warmings. This poleward and down- 
ward flaw t a k e s  place throughout a very deep reg ion  as t h e  warming occurs ,  
with the  much weaker r e t u r n  flow confined t o  l o w  l e v e l s .  The r e s i d u a l  mean 
meridional c i r c u l a t i o n  should c o n s t i t u t e  a good f i r s t  approximation 

Pollack et a l .  hypothesized t h a t  C02 and water ice condensa- 

Numerical s imula t ions  conducted with a s i m p l i f i e d  beta-plane wave-mean 
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appropr i a t e  t o  t h e  t r a n s p o r t  of tracers (Holton, 19811, t h u s  implying 
t r a n s p o r t  i n t o  t h e  polar i n t e r i o r  of a t r a c e r  i n i t i a l l y  located l a r g e l y  
equatorward of t h e  cap boundary (e.g., dus t  or water). 

F u l l  tracer ( d u s t )  t r a n s p o r t  s imulat ions corresponding t o  t h e  dynam - 
ical warming s imula t ions  are planned. These w i l l  al low a q u a n t i t a t i v e  
examination of the t r a n s p o r t  of dus t  in to  t h e  polar region i n  a s s o c i a t i o n  
wi th  a polar warming event .  
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DUST DEPOSITION AND EROSION ON MARS: CYCLIC 

DEVELOPMENT OF REGIONAL DEPOSITS 
Philip R. Christensen, Dept. of Geology, Arizona State University, Tempe, AZ, 85287. 

The cycle of dust erosion, transport, and deposition plays an important role in the evolution 
of the martian surface, both today and in the past. Thermal, radar, and visual remote sensing 
observations provide important constraints on the surface properties, and have been used to 
determine the location and physical properties of regional dust deposits. These deposits provide 
direct clues to the rate and history of dust deposition, and suggest that the martian surface is being 
actively reworked. The observed dust cycle may be directly related to the cycle of variations in 
Mars' orbit, with dust continually transported between hemispheres on time scales of 105 to 106 
years. 

Major dust deposits are currently located in three northern equatorial regions: Tharsis 
(-200s to 590N, 600 to 19PW), Arabia ( - 5 O S  to 300N, 3000 to 3600W), and Elysium (100 to 
300N, 2100 to 225OW). They are covered by fine (-2-40 pm), bright (albedo > 0.27) particles, 
with fewer exposed rocks and coarse deposits than found elsewhere (1,2). These regions also 
have less bonded material exposed at the surface than found elsewhere (3). Dust deposits may 
have initially formed due to differences in wind velocity. Once initiated, the burial of sand and 
rocks would make removal of fines increasingly difficult, enhancing the rate of dust accumulation. 
Dust is currently deposited uniformly throughout the equatorial region at a rate of -40 pndglobal 
storm. Over geologic time the rate of accumulation may vary from 0 to 250 pm/year due to 
changes in atmospheric conditions produced by orbital variations (4). Dust deposited during 
global storms is subsequently removed only from dark regions, resulting a net accumulation in the 
low-inertia, bright regions. The evidence for the subsequent removal from dark regions comes 
from: 1) the observed higher dust content over dark regions than bright regions during clear 
periods; 2) the post-storm darkening of dark regions (5,  this issue); 3) the removal of storm- 
deposited dust at the Viking lander 1 site during the year following the major 1977 dust storms (6); 
and 4) the historical persistence of classic dark features. Non-removal of dust from low-inertia, 
bright regions results in a net accumulation of dust in these areas. 

The thickness of the current dust deposits can be estimated from thermal, radar, and visual 
observations.. The low thermal inertia of the deposits places a lower limit of -0.1 m on their 
thickness, while the sparse but ubiquitous presence of exposed rocks and the degree of visible 
mantling indicates that the thickness is less than 5 meters (7). Dual-polarization radar observations 
of Tharsis reveal a very rough texture. These measurements can best be reconciled with the other 
observations by assuming that a relatively thin dust layer buries most of the surface rocks but that 
the radar samples through this layer to the rough surface below (1). The maximum thickness of 
this layer can be estimated from the electrical properties of rock powders. For dry powders, the 
radar energy should penetrate 5 to 50 wavelengths (0.6 to 6 m for the 12 cm radar used) before 
being attenuated by l/e (8). The presence of adsorbed water will not affect these results (9). 
Thus, 12 cm radar could penetrate - 1 my be reflected, and exit the surface with only a l/e 
reduction in initial energy. This estimate puts a constraint of 1-2 m on the dust mantle thickness, 
which agrees well with the value obtained using the exposed rock abundance derived from thermal 
measurements. 

Based on their thickness and rate of accumulation, the age of these deposits is 1@-106 
years, suggesting a cyclic process of deposition and removal (1). One possible cause may be 
cyclic variations in the magnitude and location of maximum wind velocities related to variations in 
Mars' orbit. At present, perihelion and maximum wind velocities occur in the south whereas 
regional dust deposits occur in the north, suggesting net transport from south to north. Orbital 
parameters oscillate with periods ranging from 5x104 to 106 years. The agreement between these 
periods and the dust deposit age suggests that there is a possible link. At different stages in orbit 
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evolution, maximum wind velocities will occur in the north, with subsequent erosion and 
redistribution of the accumulated fines. 

The model proposed here implies that material must be periodically removed from 
regional dust deposits in order to prevent long-term buildup of fine material in a given location. 
Thus, the proposed young age of these dust deposits requires mechanisms for eroding extensive 
deposits of fine material. The burial of sand and rocks makes it increasingly difficult to set 
particles in motion, with 20 pm particles requiring wind velocities a factor of 2 higher than the 
most readily moved particles (10). There are, however, several mechanisms for eroding these 
deposits, including erosion from the edge inward, and increased surface shear stress produced by 
increased winds (1). 

A more plausable mechanism involves the formation of coarse particles as bonded 
aggregates of dust. Bonding of material has been observed at both Viking landing sites, and 
globally pervasive crusts have been detected from remote sensing observations (2). These crusts 
may form during transition periods between obliquity extremes as volatiles carrying adsorbed ions 
are cycled into and out to the surface (2). This mechanism would link the erosion of the deposits 
to the same process that leads to their formation. Thus, crusts could form after the deposition of a 
layer of fine material has been deposited after each obliquity cycle. Such crusted aggregates could 
provide a source of coarse particles that could be more readily moved by the wind, thereby 
providing a mechanism for eroding the underlying deposit of dust. 

Perhaps the most important process may be surface erosion due to insolation-driven 
convective vortices (dust devils) of various scales. Experimental work suggests that vortices are 
very effective in raising particles of all sizes which can then be easily transported by much lower 
winds (1 1). There is direct evidence for the Occurrence of dust devils on Mars, both through the 
passage of 5-950 m diameter vortices at the Viking lander sites (12), and through direct 
observation of dust devils from orbiter images (13). Of the 118 vortices observed at the lander 
sites, 4 had wind velocities greater than 30 m/sec, which may have been sufficient to raise dust 
(12). These vortices produced a factor of 2-3 enhancement in the ambient wind velocity. Because 
dust devils form due to convection in an atmospheIe with a superadiabatic lapse rate, they are more 
frequent during periods of maximum surface heating. This erosion mechanism would be most 
effective over low-inertia surfaces during summer, and may provide a mechanism for eroding dust 
from the hemisphere that has the maximum solar insolation during summer. Thus, dust deposited 
in one hemisphere when the insolation maximum was in the opposite hemisphere would 
subsequently be eroded when obliquity variations caused the insolation maximum to reverse. 

The presence and history of regional dust deposits provide evidence for cyclic processes of 
deposition outside the polar regions and support models of cyclic variations in martian climate over 
geologic time. Dust is continually eroded and redeposited, with the location of major deposits 
shifting on time scales of 105 to 106 years. In this model much of the uppermost martian surface is 
young and is being constantly reworked. 
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SURFACE ALBEDO VARIATIONS ON MARS: IMPLICATIONS FOR 
YEARLY DUST DEPOSITION AND REMOVAL 
Philip R. Christensen, Dept. of Geology, Arizona State University, Tempe, AZ, 85287 

Dust deposition and removal is an important process in the development and modification 
of the martian surface. Mars has been known to have variable surface markings from the earliest 
telescopic views of the planet. These changes have since been seen to be related to aeolian activity, 
primarily through the reworking of bright dust deposited following major global dust storms (1,2). 
Viking Infrared Thermal Mapper (IRTM) observations of albedo have also revealed significant 
changes in surface brightness through time, again primarily associated with major global dust 
storms (3,4). All -.f ~ se observations indicate that there is a significant amount of dust that is 
deposited during the decay of global storms which is subsequently reworked and redistributed. 
The purpose of this study is to determine the degree, spatial distribution, and timing of the 
deposition and removal of dust-storm fallout, and to relate the current patterns of dust deposition 
and removal to the long-term evolution of the martian surface. 

A model has been proposed (5 ,6  this issue) for the development of regional dust deposits 
that form through the preferential accumulation of dust-storm fallout into specific northern 
hemisphere regions. In this model, dust is deposited uniformly during the decay phase of each 
major storm, but is subsequently removed only from regions that are seen today as classic dark 
areas. Thus, dark regions remain unmantled by dust, whereas bright regions have developed a 1-2 
m thick mantle of fine, bright dust (5). This model can account for the high t h e w  inertia (coarse) 
material observed in dark regions, together with their relatively high rock abundance (7), and low 
albedo. Conversely, bright regions have fine particles (5-40 pm) and fewer exposed rocks, 
presumably due to mantling of the coarse material by dust. 

In order to directly observe the seasonal changes in surface brightness associated with dust 
deposition and removal, the albedo of specific regions in both hemispheres has been determined 
through time. The IRTM data were collected into 10 latitude by 4O longitude bins, at 3 hour 
intervals for each 100 of L,. Using these data, the albedo changes for a given area have been 
investigated from the beginning of the Viking mission (L, 84O), through the fiist (L, 190-2400) 
and second (L, 270-3400) global dust storms that occurred in 1977. Global data are available 
through L, 1200 of the second year, allowing a year to year comparison of surface albedo. 

The albedo variations as a function of season are shown in Figure 1 for representative 
bright and dark regions. All of the areas studied show a marked increase in brightness associated 
with the two global storms, due primarily to the presence of dust in the atmosphere. The increase 
in brightness, even for bright regions, indicates that the albedo and scattering phase function of 
suspended dust varies from dust on the surface. The maximum brightness at the peak of the 
second storm was nearly equal for most bright and dark regions, indicating that the atmospheric 
dust was optically thick. For some dark regions, however, such as Solis Planum, the albedo 
remained relatively low even at the height of the storm activity, suggesting that the atmospheric 
dust was not globally uniform nor well mixed. Many areas show a non-uniform decrease in 
brightness during the decay phase, again suggesting spatial variations in dust load and non- 
uniform mixing, possibly due to episodic injection of dust into the atmosphere locally (8). 

The albedo of most regions had returned to the pre-storm value by L, 3 5 5 O ,  indicating that 
the atmosphere had cleared to pre-storm levels by that time. This conclusion is supported by 
Viking lander observations, which show that the opacity over the two lander sites had decreased to 
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pre-storm levels by Ls 3600 (8). Therefore, surfaces that remained brighter after L, 3600 than they 
were prior to the two storms are thought to be covered by a thin layer of bright dust fallout. 

The distribution of surfaces that remained bright following the storms, and those where the 
surface quickly returned to its pre-storm albedo follow a consistent pattern. The albedo of bright 
regions, such as Arabia and Tharsis, rapidly returned to pre-storm values, and was close to the 
albedo of the previous year (Fig. la). Many dark regions also darkened to nearly their pre-storm 
levels by L, 3600 (Fig. lb). This pattern holds particularly well for southern hemisphere dark 
regions. This behavior is consistent with the model of deposition described above; in dark regions 
the dust is rapidly removed with little net accumulation, whereas in bright regions a dust mantle 
already exists so that the deposition of additional bright dust does not affect the surface albedo. 

There are several dark regions that differ from the general trends described above and 
provide insight into the level of dust activity that occurs throughout the year. Syrtis Major and 
Acidalia Planitia are among the few regions that remained significantly brighter at L, 3600 than they 
were before the global storms began. These areas did, however, continue to darken with time, 
returning to nearly their pre-storm albedo by L, 1200 (Fig. IC). It is interesting to note that the 
albedo of these and some other regions was still slightly higher at this time than it was the previous 
year, suggesting that some dust still remained on the surface. This finding is consistent with 
observations at the Viking lander 1 site where dust was deposited following the global storms and 
was not removed until over a year later (9). These observations support the hypothesis that Syrtis 
Major and Acidalia Planitia act as local dust sources during inter-storm periods, producing 
enhanced dust loading in the northern hemisphere (10). 

In summary, observations of seasonal changes in surface albedo reveal regional differences 
in the deposition and subsequent erosion of dust-storm fallout. Southern hemisphere dark areas 
quickly return to close to their pre-storm albedos, suggesting rapid removal of any dust that was 
deposited. Northern hemisphere dark regions are brighter post-storm, but gradually darken to pre- 
storm levels over a Mars year. In doing so they act as locd sources of dust during otherwise clear 
periods. Dust does not appear to be removed from bright regions, resulting in the 1-2 m thick 
deposits observed today. 
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1 
1.2.1 FOURIER COLLOCATION 

For problems with periodic boundary conditions, the Fourier expansion of 
l 

a function u(x) is given by the infinite series 

I The collocation projection is defined by the discrete Fourier transform pair 
t 

where the coefficients ak are defined by 

I 

The collocation points, xj, are uniform on the interval [0,2r] ~ 

x = 21rj/N j = 0,1,2,...N-le 
j 

The transforms (9) and (10) are almost always computed by the use of a fast 

Fourier transform if N is a highly composite integer such as N = 2p3q. 

Derivatives of the function u at the collocation points are approxi- 

mated by the derivatives of the interpolating polynomial. Thus, the Ilth 

derivative of u is approximated 
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From the form of equation (121, it is clear that the evaluation of the deriva- 

tive at the collocation points can also be computed efficiently with a fast 

Fourier transform. See Hussaini, Streett, and Zang [ 4 ]  for more information 

on the implementation of the Fourier collocation method. 

1.2.2 CHEBYSHEV COLLOCATION 

The collocation points for using a Chebyshev method to approximate a non- 

periodic function are usually defined by 

These points are the extrema of the Nth order Chebyshev polynomial, TN(x), and 

are obtained from the Gauss-Lobatto integration formula (see Davis and 

Rabbinowitz [ 51 ). 

The collocation projection operator is defined as the interpolation 

N -. 

P u = 1 anTn(x) 
n=O 

where the coefficients are defined by 

2 j = l,N 
(15)  

1 otherwise 

Again, derivatives of u at the collocation points are approximated by 

the derivative of the interpolating polynomial evaluated at the collocation 

points. The first derivative, for example, is defined by 



N 

n=O 
du - dx = 1 a:') T,(X> 

= o  (1) 
N+l a 

n = N-l,l,...,O . 

The transform pair given by equations (14) or (16) and (15) can be 

efficiently computed with a fast cosine transform. Equivalently, the inter- 

polating polynomial and its derivatives can be computed using matrix multipli- 

cation. The matrices for the Chebyshev collocation method are conveniently 

collected in the review by Gottlieb, Hussaini, and Orszag 161. For N < 32, 

this approach is competitive with using a fast cosine transform, at least on 

serial computers. 

1.3 APPROXIMATION TEEORY (COLLOCATION) 

1.3.1 FOURIER COLLOCATION 

The problem of how well PNu approximates u for Fourier approximations 

has been discussed by Kreiss and Oliger [ 7 1 ,  Pasciak [ 8 ] ,  and by Canuto and 

Quarteroni 191. See also Mercier [ l o ] .  It is most convenient to express the 

interpolation results in terms of a Sobolev space, Hm(0,2s). This is a 

7 1 * 1 L - - L  ^ _ ^ ^ ^  --;A& A&- n i i u e ~ L  b p ~ e  w i ~ i i  ~ i i e  i iOr i i i  
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defined in  terms of t he  seminorms 

The use of the  d i s c r e t e  Four ie r  t ransform p a i r  ( 9 ) ,  (10)  r e p r e s e n t s  t h e  

p ro jec t ion  of t he  Sobolev space onto the  space SN(0,27r), t h e  space of 

Four ie r  polynomials of degree N. 

The primary i n t e r p o l a t i o n  r e s u l t  i s  given by Theorem 1: 

Theorem 1: For any 0 p 5 q with  q > 1/2 t h e r e  e x i s t s  a 

cons tan t  C independent of u - and N such t h a t  

Proof: See Pasciak [ 8 ]  . 

Equation (19)  states t h a t  the  ra te  of convergence depends ( through the  

o rde r  of Sobolev norms) only on the  smoothness of the  func t ion  being approxi- 

mated. This type of e r r o r  decay i s  known as spectral  accuracy. In  p r a c t i c e ,  

one sees e r r o r s  which decay exponent ia l ly  and hence s p e c t r a l  accuracy i s  o f t e n  

c a l l e d  exponent ia l  accuracy. Several  a p p l i c a t i o n s  descr ibed  i n  Sec t ion  2 

e x h i b i t  exponent ia l  accuracy. The term i n f i n i t e  order  accuracy i s  a l s o  used 

o f t e n  t o  r e f e r  t o  the  case as q + a. 



Exponential accuracy has been shown explicitly by Tadmor [ll] for func- 

tions u which are also analytic in the complex plane. 

Theorem 2: - Let u(x) 2a-periodic and analytic in a strip of 

width 2s0. Then for any 0 < s < so 

p -Ns IIu - P ull < CM(s)/sinh(s)N e 
N P -  (20) 

where C depends on p and - 

Proof: See Tadmor [ll]. 

If the solution is not very smooth, then the approximation may not be 

very good. In fact, if the function is discontinuous, the interpolant shows 

global oscillations (Gibbs phenomenon) and the approximation error decay is 

globally only first order. Smoothness is not usually a problem with the solu- 

tions of many elliptic or parabolic equations, but discontinuities are 

characteristic of the solutions of hyperbolic equations. 

It is still possible to obtain spectrally accurate approximations to non- 

smooth functions, at least away from any discontinuities, but some type of 

filtering is required. Two papers which address this issue are Majda, 

macijonough, and Osher i i 2 j  and Gottiiet siid Tadmor i131 .  The f i rs t  appreach 

used to smooth discontinuous solutions was that of Majda, MacDonough and Osher 

- -  
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[ 1 2 ]  whose results show that spectral accuracy can be retained if Fourier 

space filtering is applied. Since the main results refer directly to the 

solutions of hyperbolic partial differential equations, they will be discussed 

in the next subsection. 

Gottlieb and Tadmor [13] have taken the approach of smoothing in real 

space to allow the accuracy to depend on the local smoothness of the func- 

tion. The smoothing procedure consists of convoluting the collocation approx- 

imation with a regularization kernel which is localized in space. If we 

call P u the smoothed approximation to the originally oscillatory inter- 

polant 

N 

P p ,  the convolution takes on the form 

where 

is the Dirichlet kernel localized in space by the cutoff function 

The function p ensures that the kernel does not interact with any regions 

of discontinuity. For example, for a single discontinuity at x = n, they 

choose With this smoothing, they show that the error depends 

only on the smoothness of the cutoff function p ( S ) :  

8 = r lx  - nl. 



I 

I 
I 
I 

i 

i 

1 
I , 
I 

1 
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Theorem: Let p ( 5 )  be a C2’ cutoff function satisfying - 
p ( 0 )  = 1 and having support in   IT,^]. 

the smoothed function Pu satisfies the eE 
N 

O < k < 2 s  - -  

Proof: See Gottlieb and Tadmor [13]. - 

1.3.2 CHEBYSHwl COLLOCATION 

Then for any x in - 
:imate 

(1 + e-2s)N1-s s > 1. 

To study the approximation properties of the Chebyshev projection (14), 

it is practical to work in a weighted Sobolev space with weight w(x) = (1 - 
x~)-’/~. Defining the weighted Lw norm by 

l 2  
II ull = (U,U)~ = u wdx 

0,w -1 

and the Sobolev norm by 
2 ‘ diu 2 

qsw i-1 dx 
II un = c l l i , l  0,w 

the spectral approximation result is given by 

Theorem 4: Let q > 1/2 - and 0 - -  < p < q. Then there exists a - 
cocs tmt  C such_ t h a t  for all u in Hq(-l,l) W 
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4 ,W' 
IIU - P ull < CN2p'q IIuII 

N P,W- 

Proof: See Canuto and Quarteroni [91. 

(27)  

So, like the Fourier approximation, the Chebyshev interpolation gives 

spectral accuracy; that is, the accuracy depends only on the smoothness of the 

function to be interpolated. Exponential convergence has also been proved by 

Tadmor [ll]. This time, the function u must be analytic in an ellipse with 

foci at -1 and 1: 

Theorem 5:  Assume u(x) is analytic in [-1,1] and has a regularity 

ellipse whose sum of its semi-axes equals r = exp(nO) > 1. Then for any 

n , O  < rl < rlo 

0 

we have 

IIu(x) - PNull < 8M(q)( cot h ( Nn ) ) 1'2Ne-M 
H k  - e2q - 1 

(28) 

where the norm is defined bv 

Proof: See Tadmor 1111. 

If the function which is being approximated is discontinuous, it is still 

theoretically possible to recover a spectrally accurate solution [13] by fil- 

tering in physical space. The procedure is the same as the smoothing proce- 



dure €or the Fourier case, but the Dirichlet kernel is replaced by 

1.4 TBIZORY OF SPECTRAL COLJXXXTION METHODS FOR PDE'S 

Proofs of the convergence of spectral approximations to partial differen- 

tial equations are usually accomplished using energy methods which mimic 

proofs of the well-posedness of the original equations. Consequently, it is 

most convenient to discuss stability and convergence with respect to the three 

major types of partial differential equations separately. 

I 

1.4.1 ELLIPTIC EQUATIONS 

Theoretical analysis of the convergence of Fourier collocation methods is 

simplified because of periodic boundary conditions. The elliptic problem is 

to find the function u(x) which satisfies 

Lu = f x€[ 0,2n 1 
u(O)=u(2r) 

where L has the property 

(~u,u) 2a iu11:  a > 0.  ( 3 2 )  

The Fourier collocation approximation is obtained as described in section 
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1.2.1 and satisfies the same inequality, i.e., VUESN 

2 (Lcu,u) atiuti 

Then we have the 

'Theorem 6: For T > 1 there exists a constant C such that if 

then the following estimate is optimal: 

- 
f€HT-2(0,2n)  and u€HT(0,2n) 

P P 

2 (1-T>/211ul, 
T 

IIu - P uII < C(l + N ) N 1 -  

Proof: See Mercier [ 101. 

(33)  

Chebyshev methods with both Dirichlet and. Neumann boundary conditions 

have been analyzed for the elliptic differential equation of the form 

Lu = -(aux)x + (bu)x. ( 3 4 )  

The Chebyshev spectral collocation approximation is formally written as 

For Dirichlet problems, the equation is collocated at the interior points and 

boundary conditions of the form 

u(-1) = u1 and u(+l) = ur ( 3 6 )  
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are specified directly at the boundary points. Stability and convergence were 

proved by Canuto and Quarteroni [14] using a variational approach. They show 

m@QrQls 78 Uc be the solution t o  Lcuc = fc where Lc is defined 

by equation (35) with homogeneous boundary conditions, ur = u1 = 0 

suitable conditions on a, b, a the following estimate holds 

then with 

II u - u c II 1,w- < CIN1-rIlulI f 9 W + C2N-slIflls,w. (37) 

Proof: See Canuto and Quarteroni [14], Theorem 2.4. 

Convergence proofs for Neumann or mixed-type boundary conditions are 

available for boundary conditions applied in one of two different ways. A 

discussion of these approaches can be found in Canuto [151, (161. The first 

approach is explicit. At interior points, the equation is collocated normally 

as in equation (35). At the boundary points, however, the collocation approx- 

imation to the derivative is written in matrix form and the boundary condi- 

tions are used to determine the value at the boundary point. Thus, the 

approximation to the boundary condition 

I 

B u = flux + au 1 

B u = 6ux + YU r 

is found by solving the system 
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N- 1 

j=l  
(a + Bd )u + BdONUN -B 1 dojuj 00 0 

where uj = uC(xj) and [d i j ]  i s  t h e  mat r ix  f o r  t h e  d e r i v a t i v e  a t  t h e  

c o l l o c a t i o n  po in t s  ( s e e  G o t t l i e b ,  Hussa in i ,  and Orszag [ 6 ] ) .  

The convergence i s  very r ap id  f o r  smooth s o l u t i o n s :  

Theorem 8: u > 1/2 and l e t  u - and uc be s o l u t i o n s  t o  Lu = 

f Lcuc = f c  where L and are def ined  as above. Then wi th  

e x p l i c i t l y  appl ied  Neumann boundary cond i t ions  t h e  following convergence 

- Lc 

e s t ima te  holds  

+l l f l l  } IIu - u II < CN -u {llullu+2,w 
c 2,n - ,w 

( 4 0 )  

2 where Q = (1  - x )w(x) - and C i s  independent of N. 

Proof: See Canuto and Quarteroni [14 ] ,  Theorem 3.2. 

Canuto [16] a l s o  d e s c r i b e s  how t o  impose Neumann boundary cond i t ions  

i m p l i c i t l y  f o r  e l l i p t i c  problems. I n  t h i s  way, t h e  boundary cond i t ions  are 

n o t  exac t ly  s a t i s f i e d  because what is  a c t u a l l y  solved i s  t h e  modi f ica t ion  of 

t h e  i n t e r i o r  approximation. For t h e  s p e c t r a l  case of a pure Neumann problem, 

t h e  f i r s t  d e r i v a t i v e s  are computed normally as i n  equat ion  (16). A t  t h e  

boundary p o i n t s ,  t h e  d e r i v a t i v e s  are rep laced  by t h e  Neumann condi t ions .  Then 

t h e  second spectral d e r i v a t i v e s  are computed by us ing  (16) aga in  on t h e  modi- 
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f i e d  set of d e r i v a t i v e s .  This has the  advantage t h a t  a l l  of t h e  po in t s  are 

t r e a t e d  t h e  same, but  t h e  boundary condi t ions are not  exac t ly  s a t i s f i e d .  The 

boundary e r r o r  does decay s p e c t r a l l y ,  however. 

Theorem 9: Let uc be  the  s o l u t i o n  t o  Lcuc = f wi th  i m p l i c i t  Neumann 

boundary condi t ions .  If u€H:(-l,l) - with m > 5/2 then  

a uC - ( k l )  1 < CN4-mllull a x  - m,w 

where C 0 i s  independen 

Proof:  See Canuto [161. 

The convergence i n  t h e  i n t e r i o r  is a lso  spectral ,  and t h e  estimate bounds 

both the  s o l u t i o n  and t h e  c o l l o c a t i o n  der iva t ive .  

Theorem 10: Under t h e  assumptions of Theorem 9 ,  

N- 1 

j= l  m,w 
IIU - u u + ( 1 [ux - (u ) ] ( x . ) w . ) ~ / ~  - < CN2-mlull 

C X  J J c 0,w 

where t h e  wj are t h e  Gauss-Lobatto weights a t  t h e  p o i n t s  x j .  

Proof: See Canuto [ 161 . 
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1.4.2 PARABOLIC EQUATIONS 

The convergence and stability theory for linear parabolic equations, like 

the theory for elliptic equations, is fairly well developed. In particular, 

the theory has centered on studies of semi-discrete equations in which the 

spatial variation is discretized, but the time variation is left continuous. 

The emphasis, however, has been on application to boundary value problems-- 

that is, on the convergence of Chebyshev collocation methods. In this section 

we survey theoretical results for initial-value problems of the form 

u = ( A U ~ ) ~  + Bu + Cu + f t X 

where A, B, and C are n x n matries. The general collocation approxima- 

tion to the first, third, and fourth terms of the right hand side of equation 

( 4 3 )  is written in a manner identical to that of the elliptic equations in 

equation ( 3 5 ) .  

Stability of the Fourier approximation of the heat equation is easy to 

prove and is discussed in Gottlieb, Hussaini, and Orszag [61. The more com- 

plicated case is equation ( 4 3 )  above. Kreiss and Oliger 1171 have proved 

stability with two different treatments of the first order term. The first 

treats it in "skew symmetric form", that is, by writing 

Bux + CU = T (Bux + (BU)~) + (C - Bx)u. ( 4 4 )  

The second, discussed more fully in the next section, involves filtering the 
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I 

first derivative to ensure stability. A convergence estimate using the skew 

symmetric form for the scalar equation with f = 0 is 

Theorem 11: Let T > 1, T > 0, and assume that u EHT+'(0,2a). Then 
O P  - - 

there exists a constant C such that the following estimate holds: 

llu(t) - ucll0 

for all tE[O,T]. 

Proof: See Mercier [lo] Theorem 11.2. Here Hp is defined in terms of 

distribution derivatives of periodic functions. 

The convergence of Chebyshev approximations to parabolic equations on 

bounded domains has received a lot of attention recently. The spatial approx- 

imation for a Dirichlet problem will be exactly like that f o r  the elliptic 

problem. Stability for the heat equation with non-constant coefficients was 

originally shown by Gottlieb [18]. Convergence estimates were worked out by 

Canuto and Quarteroni [19]. For the scalar heat equation 

u = a(x)uxx t 
x E (-1,l) 

with homogeneous boundary conditions u(-1,t) = u(1,t) = 0 they show 

Theorem 12: Let u > 1/2 and S > u + 2 and T > 0. If - - - - 

uEL1(O,T; HZ(-l,l)) then there is a constant C, independent of N - such 
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that 

where the norm 

integration formula 

I l * I I N  is the discrete norm derived from the Gauss-Lobatto 

N w.v(x.1 2 
IIVllN = 1 -a(x.> J J  

J j =o 

Neumann boundary conditions for parabolic problems can also be applied 

either explicitly or implicitly. For the implicit treatment, convergence is 

similar to that of the corresponding elliptic equation: 

Theorem 13: Suppose the solution to the differential equation (46) with 

Neumann boundary conditions is regular to the extent that u€L2(O,T;H:(-1, 1)) 

and the time derivative satisfies utcL 2 (O,T;Hw m-1 (-1,111 for T > 0 and m - - 
> 5/2. - If uOEH:(-l,l) then 

t 2  + IIull d.c - < C1N2-m{ II u 0 II m,w 0 m (49) 

Proof: See Canuto [ 161 Theorem 4.4. 
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1.4.3 HYPERBOLIC EQUATIONS 

The study of the convergence of spectral approximations to hyperbolic 

equations is complicated by the fact that the straight-forward discretization 

of an equation of the form 

u + a(x)ux + bu = 0 t 

written as 

a uC a - + PN(a(x) ax) + bu at C 
= 0 

is often unstable. In this section, we will discuss the available theory of 

formally stable approximations. 

Fourier methods are stable if a(x) is of fixed sign. If a(x) in 

equation ( 5 0 )  is strictly positive and b = 0, the energy estimate for the 

approximation, (51)  

shows that the approximation is stable. If a(x is zero at some point, how- 

ever, then this estimate is not valid and no general technique is available to 

show stability. 

Two basic approaches have been used to devise schemes which can be shown 

to be stable. The first, indicated in the last section, is to write the spa- 

tial derivative in skew-symmetric form. That is, instead of computing (51), 

one computes 

a3uc 3(P au ) 
} - 1 / 2  PN{e} + buc = 0. a uC 

'I2 ' N i x '  X (53)  
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Kreiss and Oliger [20] ,  [17] showed that this discretization is stable. 

Mercier [ l o ]  examined the stability and convergence of the Fourier approxima- 

tion to the skew-symmetric equation 

and showed that the error decay is spectral. 

T > 1 and T > 0, if the initial condition 

satisfies u(x,O)EH ‘(0,2n) then there is a constant C independent of N 

such that 

- Theorem 14: For - 

P 

Ilu(t) - uc(t)ll - < C(l + N (55) 

Proof: See Mercier [lo], Theorem 9.1. 

Though approximations written in skew symmetric form are stable, there 

are objections to their use. The first objection is that they are less 

efficient since they have twice as many derivatives to evaluate. More 

important, conservation is lost when this is applied to conservation law equa- 

tions (such as the equations of gas-dynamics) for the computation of weak 

solutions. Tadmor [21] has examined the skew-self adjoint form of systems of 

non-linear conservation laws. They can be explicitly shown to be well-posed, 

but the conservation property is lost. 

The alternative to rewriting the equation in skew-symmetric form is to 

use the approximation of equation (51) and filter the solutions. Finite 



difference solutions are often filtered by adding an explicit low order 

artificial viscosity. The goal of filtering Fourier spectral solutions is to 

do so without destroying the accuracy of the method. 

Two approaches for filtering Fourier approximations to guarantee 

stability have been suggested. The first was proposed by Majda, McDonough and 

Osher [ 1 2 ] .  In their method, the spectral derivative defined in equation ( 1 2 )  

is modified by filtering the computed solution. For linear problems, this can 

be done efficiently by modifying the Fourier coefficients of the solution and 

using those new coefficients when the derivative is computed. Let 

p(x)ecW(-n,n) be a "filter function". Its values are zero near 8 = f n 

and identically one in a neighborhood of 6 = 0. The Fourier coefficient 
A A 

is replaced by p(2nk/N)\ and this is used in equation ( 1 2 )  to k U 

compute the derivative. 

For smooth initial conditions, smoothing gives a stable approximation and 

spectral accuracy 

W 
Theorem 15: - For uo€C the error satisfies the inequality 

Ilu(x,t) - uc(x,t)Ys - < C hA for all 

where C depends on both s - and A .  

Proof: See Majda, McDonough, and Osher [ 1 2 ] ,  Corollary 1.  

If the solution is discontinuous, it is still possible to obtain spectral 

accuracy in the sense of equation ( 5 6 )  if the initial condition is  properly 
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smoothed. It is not enough to smooth the discrete Fourier coefficients of the 

initial condition with a filter whose support is enclosed within the support 

of p .  Rather, it is necessary to use smoothed versions of the exact 

Fourier coefficients. 

A different approach to f iltering was proposed by Kreiss and Oliger 

[17]. Instead of filtering the solution with a predefined filter, they showed 

that linear stability could be obtained by smoothing the space derivative with 

a weak filter which depends on the smoothness of the function. They arbi- 

trarily split the frequency range of the solution into a high frequency range, 

lkl The coefficients of the low 

frequency range are not modified at all. The coefficients of the high fre- 

quency range are modified only if they do not decay rapidly enough. Call 

v(x) = + defined by equation (12) and define v1 to be the derivative 

summing only the low frequency components lkl 9 1 '  The modified 

coefficients of the derivative are defined to be w = Hv where 

> N1, and a low frequency range, lkl 5 N1. 

Vk 
for lkl 5 N1 
if lkl > N1 and Iv , ~  < D Ilvlll/lkl j - 

otherwise. 

(57) 

Kreiss and Oliger prove the following stability theorem: 

Theorem 16: Suppose the coefficient a(x) in equation (50) is smooth so 

that its Fourier coefficients decay at a rate lkl-B. The approximation 

Ha uc 
u + PN(a -) = 0 t ax (58) 
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where the filter H is defined by (57)  is stable and converges if j = ,f3 > 2. 

Proof: See Kreiss and Oliger [171, Theorem 4.2. 

For linear problems, however, it is not clear that filtering is always 

needed. The fact that the energy method gives only a sufficient condition for 

stability means that equation (52) does not prove instability if a is not of 

one sign. For example, Gottlieb, Orszag, and Turkel [ 2 2 ]  show stability in 

the usual sense of convergence as N + of the scalar equation where a(x) 

= Asin(x) + Bcos(x) + C for arbitrary A, B, C. The numerical solutions do, 

however, grow in time - just as the exact solutions do. 
For non-linear problems, experience shows that filtering of the Fourier 

approximation is needed, particularly if there are discontinuities in the 

solutions. Hussaini, Kopriva, Salas, and Zang [ 5 1 ]  discuss the application of 

these filtering methods and the choice of filters to a periodic transonic flow 

with a shock. 

Proofs of the stability and convergence of Chebyshev approximations have 

the added complication of the boundary conditions and the weight, w(x), which 

is unbounded at the endpoints. In particular, the case where a(x) changes 

sign makes it difficult to show stability. Gottlieb [18] has proved stability 

of the straightforward Chebyshev collocation for the special cases where a(x) 

= *x. 

To show stability of Chebyshev approximations in general, the skew- 

symmetric form of the equations is needed. We will survey the convergence 

L L K V L Y  of CanUto and Quarteroni L L J J  for the special case of the hyperbolic 

boundary value problem with b(-1) > 0 

el-..,,-- r e m i  
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u t + (buIx + bou = f 

u ( -1 , t )  = 0 

u(x,O) = uo 

The fu r the r  assumtion i s  added t h a t  

1/2 bx + bo - 1 / 2  bw w-' > 0 f o r  x ~ ( - l , l ) .  - X 
( 6 0 )  

For t h e  Chebyshev weight w(x) = (1  - x2)-ll2,  t h e  use of i n t e g r a t i o n  by 

p a r t s  t o  g e t  an energy estimate w i l l  g ive  an unbounded boundary term evalua ted  

a t  x = +1 ( s e e  G o t t l i e b  and Orszag [ l ] ) .  This  has l e d  t o  the  use of a modi- 

f i e d  weight and norm with which t o  prove s t a b i l i t y  and convergence. L e t  t h e  

new weight be w*(x) - (1 - x)w(x) so t h a t  w*(l) = 0. Then t h e  following 

convergence e s t ima te  holds:  

B 8 Theorem 17: Suppose t h a t  uEL"(0,T; H * ( - l , l ) )  - and b E H * ( - l , l )  
W W 

- f o r  B > 2. Then t h e  skew-symmetric Chebyshev approximation t o  (59)  

s a t i s f i e s  

Proof: See Canuto and Quar te roni  [23 ] ,  Theorem 2.3. Note: Thei r  

theorem a c t u a l l y  a l lows  f o r  more gene ra l  boundary cond i t ions  than w e  have men- 

t ioned here. 
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For computations which are not done in skew-symmetric form, such conver- 

gence estimates are not available in the general case. A s  indicated above, 

Gottlieb 1181 has shown stability in some particular cases. However, Reyna 

[ 2 4 ]  has shown that if b(x) is not strictly positive in the interval that a 

straight-forward Chebyshev approximation need not be stable. To stabilize the 

solutions he proposes the use of filtering, It is not sufficient, however, to 

simply smooth the Chebyshev coefficients. Rather, he shows that stability can 

be proved if Legendre coefficients are computed from the Chebyshev ones, the 

Legendre coefficients are smoothed, and then transformed back. 

The stability and convergence of Chebyshev approximations to the hyper- 

bolic initial-boundary-value problem for systems 

- l < x < l ,  t > O  - -  - u = Au t X ( 6 2 )  

where u is an n-vector and A is a constant matrix has recently been proved 

by Gottlieb, Lustman, and Tadmor [ 2 5 ] ,  [ 2 6 ] .  Because this system is hyper- 

bolic, the matrix A can be assumed to have been diagonalized to 

where A I  < 0 ,  A I 1  > 0 are diagonal matrices. 

Boundary conditions for which this system is well posed are of the form 

I I1 I 
u (-1,t) = Lu (-1,t) + g (t) 

T T  T T  
uLL(l,t) = R u'(1,t) + g"(t) 



-2 8- 

where u1 and represent the parti ion of u into inflow and outflow 

components (see Kreiss and Oliger [ 5 ] ) .  Under the assumption that the bound- 

ary conditions are dissipative, the standard Chebyshev collocation is stable: 

Theorem 16: Under the assumption that IR1 ILI 1 - 6 < 1, - the 

Chebyshev collocation method is stable for the system (62) with boundary con- 

ditions (63 )  in the sense that there exists a weighting pair w(x) and con- 

stants q and n o  2 0 such that for all s with Re s = q > n o  - - 

n n 

where u and g are the Fourier transforms of uc - and g. c -  

Proof: See Gottlieb, Lustman, and Tadmor [25] .  

2, SOME APPLICATIONS OF SPECTRAL COLLOCATION HETBODS 

In this section, some recent developments i n  the application of spectral 

methods to problems in fluid mechanics are surveyed. Much current emphasis 

has involved making spectral methods more efficient and more applicable to 

problems with complicated geometries. This has lead to the development of 

spectral multidomain methods which eliminate the need for global mappings and 

to the development of iterative techniques for the rapid inversion of the full 

matrices which occur when implicit time discretizations are used. 
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2.1. METHODS FOR ELLIPTIC AND PARABOLIC PROBLEMS 

2.1.1. SPECTRAL MULTIDOMAIN METHODS 

Spectral multidomain methods have been developed in order to avoid the 

need for global mappings required by spectral methods in problems with compli- 

cated geometries. A complicated domain can be subdivided into several subdo- 

mains and individual spectral discretizations can be applied to each subdo- 

main. For elliptic and parabolic problems, for handling the interfaces, early 

work considered explicit enforcement of continuity (e.g. Orszag [27 ]  and 

Morchoisne [ 2 8 ] ) .  More recently, spectral element discretizations and en- 

forcement of global flux balance have been used. The spectral element methods 

retain the accuracy of spectral methods in the context of a geometrically 

flexible finite element formulation. Global flux conservation has been used 

effectively when the mappings and/or domain sizes vary radically across inter- 

faces. 

Consider first the solution of the (second-order, self-adjoint, elliptic) 

Helmholtz equation, 

( 6 4 )  2 2 V u - A u = f  in D 

with Dirichlet boundary conditions on the domain boundary, aD. Following 

the lead of finite element techniques, the spectral element algorfthm [29 ,  301 

proceeds by recognizing the equivalence of ( 6 4 )  to maximization of the follow- 

ing variational form, 

2 2  max 
uEH 

[,{-Vu-Vu/2 - A u /2 - uf)dx, 
1 

(65) 
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The variational form, (65), is preferable over the differential statement, 

(64), in that it requires less continuity of candidate solutions. 

The spectral element discretization proceeds by breaking up the computa- 

tional domain, D, into general quadrilateral elements. Within a given element 

k, the solution, geometry, and data are then expanded as tensor product 

Lagrangian interpolants through a set of specified collocation points. For 

instance, in two space dimensions, the solution u in element k is 

represented as, 

uk(r,s) = 1 1 u!jhi(r)hj(s) 
i j  

where r and s are the local elemental coordinates, the hi are the 

is Lagrangian interpolants, the zn are the collocation points, and 

the Kronecker delta symbol. All summations run from 0 to N, where N is the 
mm 

order of the Lagrangian interpolants in each element. 

The expansions (66a) are then inserted into (65), and the functional 

rendered stationary with respect to arbitrary variations in the nodal values, 

Direct stiffness summation [ 31 ]  (which recognizes that the global 

approximation space must be CO) is then used to assemble the elemental equa- 

tions into the system matrix. It should be noted that, as regards the treat- 

ment of elliptic and parabolic equations, the "spectral element" recipe pre- 

sented here is very similar to earlier I'p-type finite element" methods [ 3 2 ]  

and the "global element'' method [33] .  

k 
ij U 

It is clear from the above representation, (661, that the global inter- 

Co, that is, that the approximation space suffers dis- polant space is only 
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continuities in derivative at elemental boundaries. Although this may appear 

to violate the basic smoothness required of spectral methods, this is not the 

case due to the fact that the variational formulation, (65), is used rather 

than the (unintegrated) Galerkin weighted-residual form. In particular, in 

the absence of "variational crimes", the spectral element method can be shown 

to achieve exponential convergence to smooth solutions as N, the order of 

(fixed) elements, is increased. For nonsmooth solutions (e.g., cornerinduced 

singularities), high-order convergence is more difficult to obtain, however 

refinement techniques have been developed for the p-type finite element method 

[321 

Variational crimes take the form of numerical quadrature errors and in- 

terpolation of boundary data. (Nonconforming elements are not considered.) 

In order to insure that these errors do not dominate the approximation errors, 

it is important to correctly choose the collocation points of the Lagrangian 

interpolants. Earlier work on spectral elements used the Chebyshev colloca- 

tion points, as they are simple to evaluate and amenable to fast transform 

techniques. However, as the variational formulation (65) has essentially a 

unity weighting, it appears that a better choice is the Legendre-Lobatto 

points from the point of view of accuracy and efficiency of numerical 

quadratures [6 ,  341. Although Legendre polynomials are less convenient than 

Chebyshev polynomials, are subject to round-off errors for high-order expan- 

sions, and cannot be "fast transformed", none of these objections are 

particularly oppressive for the relatively low-order expansions used in 

spectral element methods. 

As 23 ex2qle  of the accr;racy ef 8 TLegendre spectral element [ 3 4 j  (see 

[29 ,  301 for extensive discussion of Chebyshev-based techniques), consider the 
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problem 

in D (67a) 2 v u = o  

where D is the domain defined in Figure 1, xE[O, 11, y€[O, 1 + sinlrx]. 

Dirichlet boundary conditions are imposed such that the solution to the prob- 

lem is given by, 

u(x,y) = sin(x)e-Y. (67b) 

The error for the spectral element mesh shown in Figure 1 is plotted i n  

Figure 2. A s  expected from the analytic nature of the solution (67b) in the 

complex plane, exponential convergence is achieved as the order of the 

elements is increased. 

L, 

A s  another example of elliptic problems, consider the moving-boundary 

Stefan problem [ 3 4 ] ,  given by 

V 2 8 = 0 in D1, D2 

e = 1/2 on aD, 

A 

V8.n = 0 on aDo 

aD1 e = 1 + 1/2 coshx on 

8 = 0 on aD2, 



where D1, D2 ,  a D I ,  a D o ,  a D 1 ,  and a D 2  are defined in Figure 3. Here the 

evaluation of - and + refer to the D1 and D2 sides of aD,, 

respectively. In point of fact, the time-dependent (parabolic) version of 

( 6 8 )  was solved, approaching the steady-state only as t + a; since the 

solution of parabolic equations involves at each time step the solution of an 

elliptic equation of the form ( 6 4 1 ,  this aspect of the problem does not 

warrant separate discussion. 

Solution of the Stefan problem (68)  illustrates several aspects of the 

is unknown and spectral element method. First, since the interface 

general, it demonstrates the ability to handle complex geometry. Second, 

though the solution suffers a discontinuity at aD, the method has the 

ability to resolve certain non-homogeneities without losing "spectral 

accuracy". Figure 4 shows the interface position obtained with a Legendre 

spectral element method using a two-element mesh. In Figure 5 ,  the associated 

temperature (e )  distribution is given. High accuracy can be achieved with 

very few points. 

a Dl 

It is critical that the spectral element schemes not only be accurate, 

but also efficient as regards work required for a given level of accuracy. 

The key to the computational efficiency of the techniques is the sum factori- 

zation which follows from the tensor product representation, ( 6 6 ) .  For in- 

stance, a typical elemental term in a two-dimensional Chebyshev spectral 

element equation is of the form, 

mn 1 1.I h h dr 1 h.h ds u 
m n  i m  J *  

where hi, urnn are defined as in (661,  and all subscripts range from 0 to 
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N ,  t h e  order of the  polynomial space i n  each co-ordinate d i r e c t i o n .  Naive 

eva lua t ion  of t h i s  sum g ives  an  ope ra t ion  count of O(N3), and O(N4) i n  

t h r e e  dimensions. This sum f a c t o r i z a t i o n  i s  a t  t h e  h e a r t  of both d i r e c t  

s o l v e r s  using s t a t i c  condensation and f a s t  e igenfunct ion  s o l v e r s  [35] and 

i t e r a t ive  so lve r s  using conjugate  g r a d i e n t  a lgor i thms [361. 

Another approach t o  handl ing domain i n t e r f a c e s  was taken by Macaraeg and 

S t r e e t t  [37], [38]. Within subdomains, t he  usua l  c o l l o c a t i o n  procedure 

desc r ibed  i n  Sec t ion  1.2.2 i s  used. The i n t e r f a c e  va lues  are computed by 

r equ i r ing  t h a t  t he  s o l u t i o n  be continuous and t h a t  t he  g loba l  f l u x  be 

balanced. As an example of t h e  procedure,  cons ider  t h e  equat ion  

G(u) FX(u) - vuxx = S(U)  

u(-1) = a 

u (1 )  = b 

where an i n t e r f a c e  i s  placed a t  x = x i -  I n t e g r a t i o n  of (70) from -1 t o  

1 and the requirement t h a t  t h e  jump i n  t h e  f l u x  [ G I  be zero a t  t h e  i n t e r f a c e  

y i e l d s  

xi 1 
+ S(u)dx = G ( u )  - -S(u)dx. x=-1 x= 1 G(U) 

i -1 X 

(71) 

Numerical experiments show t h a t  s p e c t r a l  accuracy i s  re ta ined .  In  two dimen- 

s i o n s ,  the method has  been used t o  so lve  Laplace's equat ion  wi th  d iscont inuous  

boundary condi t ions.  
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2.1.2 ITERATIVE SPECTRAL WETHODS 

For evolution problems, explicit time-stepping can be extremely ineffi- 

cient. This is because the typical time-step limitation for spectral methods 

is proportional to 1/N for the advection equation and l/N4 for the dif- 

fusion equation (where N is the number of modes) [39]. Hence, implicit time- 

stepping becomes a necessity. This results in a set of algebraic equations 

which are, in general, amenable to iterative solution techniques only. Also, 

elliptic equations governing practical problems virtually require implicit 

iterative techniques. Since the condition number of the relevant matrices are 

large, preconditioned iterative schemes including multigrid procedures are the 

attractive choices. In this section, the fundamentals of iterative spectral 

methods are discussed with reference to an elementary example. 

2 

For the purpose of illustration, consider the equation, 

I 

u = f, 
X 

(72) 

periodic on [0,2n]. For the Fourier method, the standard choice of colloca- 

tion points is given in Equation (11). 

The Fourier collocation discretization of the equation (72) may be 

written 

LU = F, (73) 

where U = (uo, ul, ..., u 1, F = ( f o ,  fl' . e - ,  fN-l), and L = C-lDC. 

Here C is the discrete Fourier transform operator, C-l the inverse trans- 
N- 1 

form; and TI the diagnnal m_ztriu denct-ing the f i r s t  d e r i ~ a t i ~ e  ~ p e r ~ t c r  i~ the  

Fourier space. Specifically, 
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(j-N/2) 

, j,k = 0, 1, ..., N-1 N -2a ik 
C = e  
jk 

and (74) 

for j = 1,2, ..., N-1 
for j = 0 

The eigenvalues of L are X(p) = ip, p = -N/2 + 1, ..., N/2 - 1, and the 

largest one grows as N/2. A preconditioned Richardson iterative procedure for 

solving Eq. (73) is 

V -+ V + wHdl (F - LV) (75) 

where the preconditioning matrix, H, is a sparse, readily invertible approxi- 

mation to L. An obvious choice for H is a finite difference approximation 

to the first derivative. With the various possibilities for L ~ ~ ,  the 

eigenvalue spectrum of L-lL is given in Table I. Apparently, the staggered 

grid leads to the most effective treatment of the first derivative. This kind 

of preconditioning was successfully used in the semi-implicit time-stepping 

algorithm for the Navier-Stokes equations discussed in section 2.2 on Navier- 

Stokes Algorithms. The eigenvalue trends of that complicated set of vector 

equations are surprisingly well predicted by this extremely simple scalar 

periodic problem. 

L~~ 

FD 

Next, consider the second order equation 

-u = f  on [0,2~1 (76) xx 

with periodic boundary conditions. A Fourier collocation discretization of 
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this equation is the same as Eq. ( 7 3 )  except for the diagonal matrix D which 

represents now the second derivative operator in the Fourier space. 

2 The eigenvalues of L are X(p) = p , p = -N/2 + 1 ,  ..., N/2-1. To make 

the case for the multigrid procedure (consisting of a fine-grid operator and a 

coarse-grid correction) as a preconditioner, assume H to be the identity 

matrix I in the iterative scheme (75). The iterative scheme is convergent if 

the eigenvalues, (1 - w X ) ,  of the iteration matrix [I - wL] satisfy 

Each iteration damps the error component corresponding to X by a factor 

v(X) = IlwXl. The optimal choice of X is that which balances damping of 

the lowest-frequency and the highest-frequency errors, i.e., 

This yields 

and the spectral radius 

(1 - w X  ) = - (1 - w A  1 max min 

= N 2 / 4 ,  Xmin = I ,  and thus uSG = 1 - 8 / N  2 max In the present instance, 
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This implies order N2 iterations are needed for convergence. This poor 

performance is due to balancing the damping of the lowest frequency eigenfunc- 

tion with the highest-frequency one. The multigrid procedure exploits the 

fact that the lowest-frequency modes ( lpl < N/4) can be damped efficiently on 

coarser grids, and settles for a relaxation parameter value which balances the 

damping of the mid-frequency mode with the highest-frequency one 

( lpl = N / 2 ) .  Table 11 provides the comparison of single-grid and multigrid 

damping factors for N=64. The high frequencies from 16 to 32 are damped 

( / P I  = N/4) 

effectively in the multigrid procedure, whereas the frequencies lower than 16 

are hardly damped at all. Rut then some of these low frequencies (from 8 to 

16) can be efficiently damped on the coarser grid with N=32. Further coarser 

grids can be employed until relaxation becomes so cheap that all the remaining 

modes can be damped. In concrete terms, the ingredients of a multigrid tech- 

nique are a fine-grid operator, a relaxation scheme, a restriction operator 

which interpolates a function from the fine grid to the coarse grid, a coarse- 

grid operator, and a prolongation operator interpolating a function from the 

coarse grid to the fine grid. The fine grid problem for the present example 

may be written 

f LfUf = F . ( 8 1 )  

Let Vf denote the fine-grid approximation. AEter the high-frequency content 

of the error has been sufficiently damped, attention shifts to the 

coarse grid. 

Vf - Uf 
The coarse-grid problem is 

where 
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t 

FC f 
= R [F f f  

- L  V I ,  

R being the restriction operator. After a satisfactory approxmation, Vc is 

obtained; the coarse-grid correction (Vc - RVf) is interpolated onto the 

fine grid by the prolongation operator P, yielding the corrected fine-grid 

solution 

(83) f Vf+ Vf + P (Vc - RV ) 

The details of spectral multigrid techniques are furnished in [ 4 0 ] .  Spectral 

multigrid techniques have been used to solve a variety of problems including 

the transonic full potential equation [ 4 1 ,  4 2 1 .  Additional applications of 

spectral methods to compressible flows are described in [ 4 2 1 .  

2.1.3 Convection-Dominated Flows 

A model for convection-dominated flows is the viscous Burger's equation, 

2 u + (u I x / 2  = vuxx t u(x,t=O) = -sinlrx, 

with boundary conditions u(-1) = u(1) = 0, and "small diff-usivity," 

v = .Ol/n [43]. The solution to this problem develops a near shock. This 

near shock is characterized by the time at which the derivative at the origin 

attains a maximum value, tmax, and the value of its maximum derivative, 

lau/8xlmax. The convective term is clearly dominant for short times, however 

the diffusion term insures that the solution will be smooth. This convection- 

diff1.1sinn balance is a gnod mode1 for the kind nf phenomena that arise in 

solution of the incompressible Navier-Stokes equations. The critical numer- 
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ical issues are numerical dispersion and diffusion. The former leads to in- 

correct propagation speeds of the shock affecting The latter leads to 

smearing of the shock affecting 

tmax. 

13u/3xlmax. 

This problem has been solved by a variety of methods, including the spec- 

tral element method [43] and the explicit flux balancing method [37]. The 

spectral element calculations have used Crank-Nicolson in time on the diffu- 

sion term and the resulting Helmholtz equation in space was solved using the 

variational methods presented in Section 2.1.1. The convective term was 

handled by explicit third-order Adams-Bashforth. Four elements were used 

covering the intervals [-l., -0.051, [-0.05, 01, [O., 0.051, i0.05, 1.1 which 

cluster points around the location of high function variation. Macaraeg and 

Streett [37] used three subdomains with their flux conservation method. Table 

I11 presents a comparison of various methods on this model problem. 

2.2 . INCOUPRESSIBLE NAVIER-STOKES EQUATIONS 
This section is devoted to a description of algorithms for the solution 

of the incompressible Navier-Stokes equations in primitive variable form. The 

algorithms are based on methods discussed in the previous section in the 

simplest context. For example, simulation of instability and transition to 

turbulence in a flat-plate boundary layer have used iterative methods 

described in section 2.1.2. The spectral element method has been used for a 

variety of flow computations, including the problem of flow past a cylinder. 

The Navier-Stokes equations in the so-called rotation form are 



and 

in D 

in D 

on aD 

where q = (u,v,w) is the velocity vector, w = V x q the vorticity, 

P = p + 1 /2  lqlL the total pressure, p the variable viscosity, D the in- 

terior of the domain, and aD its boundary. In the stability and transition 

problems, the domain D is Cartesian and semi-infinite: periodic in the two 

horizontal directions (x,z), and bounded by a wall at y-0. Fourier colloca- 

tion can be used in the periodic directions (x,z) and Chebyshev collocation is 

used in the vertical (y) direction. The collocation points in the periodic 

directions are given by a relation similar to Eq. ( 1 1 ) .  The vertical extent 

of the domain 0 < y < Q) is mapped onto -1 < 6 < +1.  The veloclties are 

defined and the momentum equations enforced at the points 

m j  

Y 
j = 0 ,  1 ,  ..., N 

Y sj = cos ( T I ,  

The pressure is defined at the half points 

( 8 6 )  

and the continuity equation is enforced at these points. The staggered grid 

avoids artificial pressure boundary conditions, and precludes spurious pres- 

sure modes. 
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After a Fourier transform in x and z, the temporal discretization 

(backward Euler for pressure, Crank-Nicolson for normal diffusion, and third 

or fourth-order Runge-Kutta for the remaining terms) of Eq. ( 8 5 )  leads to 

[I - MDM] Q + At A. VII = Qc 

- A+ V Q = 0 

where 

M is the Chebyshev derivative operator, D the diagonal matrix with 1/2pAt 

as its elements, and is the interpolation operator from the half points 

to cell faces, A+ vice versa. Obviously, the equations for each pair of 

horizontal wave number (k, , k ) are indepenent and they can be written as 
the system 

A0 

-+v- 

X 

LX = F ( 9 0 )  

where X = [Q, JI]. The iterative solution of this equation is carried out by 

preconditioning the system with a finite difference approximation on the 

Chebyshev grid, and applying a standard iterative technique such as 

Richardson, minimum residual or multigrid [441 .  



The method described above solves the implicit equations together as a 

set. The extension of this method to the more general cases of interest such 

as those involving two or more inhomogeneous dtrections is not straightfor- 

ward. An alternative is the operator-splitting technique or the fractional 

step scheme [ 4 5 ] .  This method yields implicit matrices which are positive 

definite and are easily amenable to iterative methods. In the first step, one 

solves the advection-diffusion equation 

subject to the initial and boundary conditions 

* * 
= g  on aD. 

i 

Note that g* has yet to be defined. In the second step, one solves for the 

pressure correction 
** ** 

qt = -VP 
** 

v . q  = o  

subject to the conditions 

** * * * 
q (x,t = q (x,t 

A ** A 

g a n = g * n  

in D 

in an 

( 9 3 )  

( 9 4 )  

(95) 

A 

where n is the unit normal to the boundary. Further, the tangential 
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component of t h e  Eq. (95) holds  on t h e  boundary, i.e., 

** - ** 
* - r = - V P  *‘I q t  

i n  aD (96) 

where i s  a u n i t  t angent  vec tor  t o  t h e  boundary. Now g* i s  def ined  

[ 4 5 ]  as (using Taylor expansion i n  t )  

* A  n n n  g * n = ( g  + A t g t ) * n  (97) 

* A  n n n n 

g ‘I = [g  + A t  (gt  + V P  ) I  T 

Eq. (91) is d i s c r e t i z e d  i n  t h e  usua l  spectral  c o l l o c a t i o n  manner. Af t e r  a 

temporal and s p a t i a l  d i s c r e t i z a t i o n  of Eq. (93) ,  t h e  boundary cond i t ions  are 

b u i l t  i n t o  t h e  r e l e v a n t  mat r ix  ope ra to r s ,  and then a d i s c r e t e  d ivergence  i s  

taken. This r e s u l t s  i n  a d i s c r e t e  Poisson equat ion  (with as many a l g e b r a i c  

equa t ions  as unknowns) f o r  p re s su re ,  which can be solved by s tandard  i t e r a t i v e  

techniques  inc luding  t h e  mul t ig r id  method. 

Spec t ra l  element methods have been app l i ed  t o  t h e  incompressible Navier- 

S tokes  equations (85).  In a d d i t i o n  t o  ( 9 8 ) ,  t h e  uncoupled (pas s ive )  o r  

coupled (na tu ra l  convection) energy equat ion  i s  a l s o  o f t e n  of i n t e r e s t ,  The 

t i m e  d i s c r e t i z a t i o n  used f o r  t h e  Navier-Stokes equa t ions  i s  e i t h e r  a Green‘s 

func t ion  technique [ 2 9 ]  o r  an ope ra to r  s p l i t t i n g  scheme [301. Both of t h e s e  

methods reduce (85) a t  each time s t e p  t o  an i n i t i a l  convective s t e p ,  followed 

by a Stokes problem c o n s i s t i n g  of a sequence of Poisson and Helmholtz equa- 

t i o n s .  The s p a t i a l  d i s c r e t i z a t i o n s  d iscussed  above i n  Sec t ion  2 .  l .  l are 

d i r e c t l y  appl icable  t o  t h e s e  Navier-Stokes subproblems. 
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Spectral element methods have been applied to the simulation of numerous 

flows in the Reynolds number range 0 < R < 1500 [ 3 6 ,  46 - 471. An example is 

provided by the classical problem of flow past a cylinder. Results are pre- 

sented here for R = 100, based on freestream velocity and cylinder diameter, 

for times sufficiently large that the flow has reached a steady-periodic 

state. Figure 6 shows the spectral element mesh used, and Figures 7 and 8 

show the streamlines and isotherms, respectively, at one time in the periodic 

flow cycle. The thermal boundary conditions are T = T, far from the 

cylinder, and T = Tw on the cylinder surface. The isotherm pattern clearly 

reveals the spatial structure of the von Karman vortex street. Note the mini- 

mal numerical dispersion in the scheme, as evidenced by the clear identity of 

the shed packets of fluid and the absence of trailing waves in the wake. More 

details of these cylinder calculations, as well as comparisons with previous 

numerical work and experiment, can be found in ( 3 6 1 .  

2.3 HYPERBOLIC EQUATIONS 

Here, the application of spectral methods to the solution of inviscid 

compressible flow problems is surveyed. Methods for such problems are not 

nearly so advanced as those for incompressible flows. The survey is limited 

to methods for the solution of the Euler equations of gas-dynamics governing 

some flows of aerodynamic interest. For the solution of the full potential 

equation for transonic flows, see Streett, et al. [ 4 2 1 .  

The Euler equations of gas-dynamics are a coupled system of nonlinear 

hyperboiic equations which (in one dimensionj are usuaiiy written in the con- 

servative form 
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Typically, spectral discretization in space and explicit finite difference 

discretization in time are used. The discontinuous solutions of this set of 

equations have been obtained in the case of a shock tube (Gottlieb, Lustman, 

and Orszag [ 481, Cornille [ 491 ) , quasi-one-dimensional flow in a nozzle (Zang 

and Hussaini [ 5 0 ] )  and for the astrophysical problem of shocked flow in a 

galaxy (Hussaini, et al. [ 5 1 1 ) .  

The astrophysical problem is the most challenging one-dimensional com- 

pressible flow problem for which shock capturing has been attempted with a 

Fourier spectral method. It contains a strong shock and an adjacent strong 

expansion. Unlike problems with weak shocks and expansions, it was necessary 

to apply strong filtering to stabilize the numerical solution. The result of 

this drastFc filtering was a reduction of the order of accuracy. Even in the 

smooth parts of the solution away from the shock, the accuracy was only first 

order. In view of the extra work involved to compute the spectral approxima- 

tions, it is not clear that spectral methods with filtering are a viable 

alternative to finite difference methods when strong shocks are captured. 

An alternative to capturing shocks is to treat them as boundaries. In 

this case, it is possible to compute the solutions using the nonconservative 

form 

Qt + AQ, = E ( 9 9 )  

along with an ordinary differential equation for the motion of the shock. A 

number of two dimensional shock-fitted solutions are described in Hussaini, et 

al. 1521. These solutions include a shock/turbulence interaction. 
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Shock/vortex interaction and supersonic flow past a cylinder. When shocks are 
I I 

I fitted, spectral methods do indeed outperform typical second order finite 

I difference methods, as long as the solution is adequately resolved. Kopriva, 
l 
~ 

I 

I 
I 

et al. [53] compared the performance between MacCormack’s method and the spec- 

I tral collocation method for the shock/plane wave interaction problem and for 

the Ringleb problem. A comparison of the accuracy of the finite difference 

method VS. the spectral method is shown in Table IV. 

A multidomain method for the nonconservative form of the Euler equations 

suitable for use with shock-fitting has been described by Kopriva [54]. In 

each subdomain, the usual collocation method (Section 1.2.2) is applied. At 

interfaces, however, a weighted average of the derivatives is used. In one 

d imens ion, 

(100) Q: + A L t  + A R R  \ = E 

where Q1 denotes the solution vector at the interface and the derivatives 

superscripted with the L and R denote the left and right computed spectral 

approximations. The weighting corresponds to 

an upwind approximation 

For consistency, AL + AR = A. 

AL = 1/2(A + !AI) A R = 1/2(A - !AI> 

where IAI = ZIAlz-l and Z is the matrix of right eigenvectors. For many 

1 applications, this can be simplified by replacing !AI by a diagonal approxi- 

mation !AI  X I where lXlmin < A < Jhlmax is an approximation to the * * 

eigenvslues c?f A. 
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Subdividing the domain retains spectral accuracy. Table V shows the 

performance of a two domain computation of a one dimensional 2x 2 

hyperbolic system 

[: j+ [: :I [:I X = O 
(102) 

from [54] with solution u and v for an equal number of points on each side 

of the interface. 

For a given number of grid points, it is possible to obtain solutions 

with a multidomain spectral method which are significantly better than the 

single domain method. For the two dimensional nonlinear Ringleb problem 

computed by Kopriva [54], Table VI shows the effect on the error of a four 

domain division in which the position of the streamwise interface is varied. 

The accuracy is best when rapid changes in the solution are best resolved. 

The shock-vortex interaction problem described by Kopriva [ 5 5 ]  provides 

another example of the advantage of a multidomain method over a single domain 

method. A two dimensional region between the shock and an arbitrary upstream 

boundary is mapped onto a square. The shock moves downstream where it en- 

counters a vortex. The interaction of the shock and the vortex creates a 

circular sound wave centered on the vortex. Because the physical domain is 

continually increasing in size, the resolution of the solution decreases with 

time . 
The single domain solution to the shock-vortex problem cannot be computed 

without added smoothing. Figure 9a shows the pressure contours with no 

smoothing. The numerical oscillations in the pressure are of the same order 

as the sound pressure wave created by the interaction. If the region between 
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t h e  shock and the  upstream boundary i s  subdivided and some of t h e  subdomains 

are allowed t o  move with t h e  shock, smoothing i s  not  required.  Figure 9b 

shows the  p re s su re  contours  of a two domain c a l c u l a t i o n  with the  same number 

of g r i d  p o i n t s  i n  t h e  h o r i z o n t a l  d i r ec t ion .  The h o r i z o n t a l  numerical  o s c i l l a -  

I 
1 

I 

i t i o n s  are no longer  present  and t h e  sound pressure  wave is  c l e a r l y  v i s i b l e .  
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FIGURE CAPTIONS 

Figure 1. The domain and Legendre spectral element discretization used for 
solution of the Laplace equation described in the text. Although 
results are given for a single isoparametric element, similar re- 
sults are obtained with multiple elements. (Legendre results due 
to E. M. Ronquist.) 

Figure 2. A p l o t  of the L, error as a function of the number of points 
in one direction for solution of Laplace's equation in the domain 
shown in Figure 1. 

Figure 3. Description of the domain and boundaries for the Stefan problem 
presented in the text. (Stefan problem results due to E. M. 
Ronquist.) 

Figure 4 .  Spectral element prediction for the position of the interface, 
aD,, 
element mesh uses two elements, one each in each phase. 

for the Stefan problem described in the text. The spectral 

Figure 5. Temperature ( e )  distribution for the Stefan problem described 
in the text. Note the discontinuity of slope at the interface, 
a D I .  

Figure 6 .  Spectral element mesh used for simulation of flow past a cylin- 
der. Note the flexible resolution afforded by the elemental 
decomposition. (Flow past a cylinder results due to G. E. 
Karniadakis.) 

Figure 7. Instantaneous streamlines of the cylinder flow at a Reynolds 
number of R = 100. 

Figure 8. Instantaneous isotherms of the cylinder flow at a Reynolds number 
of R = 100 (Prandtl number of unity). The von Karman vortex 
street can be clearly seen in the temperature distribution behind 
the cylinder. 

Figure 9. Pressure contours for a shock/vortex interaction. (a) Single 
domain calculation. (b) Three vertical domain calculation. 
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Table 1. Preconditioned Eigenvalues for One-dimensional F i r s t  Ikrivative 
Model Problem 

~~ ~~ 

Preconditioning Eigenvalues 

Cent ra l  Differences 
kAX -m 

~~~~ ~ 

High Mode Cutoff 

0 ( 2 1 ~ / 3 )  < IkAxl - < TI 

One-sided Differences 

Staggered Grid 

Table 2. Damping Factors for N = 64 

P Si ngle-Gr i d  Mu1 t i g r i d  

1 .9980 .9984 
2 .9922 -9938 
4 .9688 .9750 
8 .8751 .goo0 
1 2  .7190 .7750 
16 .5005 6000 
20 .2195 ,3750 
24 1239 . loo0  
28 .5298 -2250 
32 .9980 6000 
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Table 111. Camparison of Methods for Solution of 

Burger's Equation (from Bef. 43, 37) 

Method 

- F o u r i e r  Galerk in  

- Four ie r  Pseudospec t ra l  

- ABCN c o l l o c a t i o n  

+coordinate t ransform 

- Spec t r a l  Element 

- FD 

- Chebyshev 

ABCN s p e c t r a l  

Rosenbrook s p e c t r a l  

ABCN c o l l o c a t i o n  

- Flux balance 

- Analy t i ca l  

I n t e r v a l  

- 

151.942 

142.665 

148.975 

14 2.3 13 

142.606 

144.237 

145,877 

152.123 

152.04 

150.1 

152.05 

151.998 

150.144 

152.126 

152.000 1 1 

152.00516 

n o t  max 

1.6035 

1.60 

1.603 

1.60 

1.60 

1.60 

1.60 

1.60 

1 . 6033 

1.63 

1.60 

1.60 

1.60 

1.60 

1.6037 

682/1024 

682/1024 

170/256 

170/256 

256/256 

128/128 

512 

64 

16 x 4 

8 1  

64 

64 

32 

64 

Aton 

5. 

10-2 

5. 

10-2 

5. 

10-2 

10'2/6 

10-2 

1/300 

10-2 

10-2 

10-2 
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Table IV. &ximum Error i n  p for MacCorrack and Spectral Computation 
of Transonic Mngleb Plow 

Grid MacCo rmack Spectral 

9 x 5  

17 x 9 

2.6 x 

1.1 x 10-2 

2 .2  x 10-2 
1.9 10-3 

33 x 17 3.2 10-3 5.0 10-5 

Table V. Solutions to (102) with Equal Number of Points on Each Side  
of the Interface 

N Error i n  u Error i n  v 

16 
32 

~ 

1.57 x 

4.15 x 
1.91 10-9 

4.86 x 
1.91 10-9 

Table VI. Effect of Strelawise Mesh Distribution on Ringleb Calculation 

G r i d  Div i s ion Maximum Error 

8 + 8  

8 + 8  
16 (SD) 
10 + 6 

0.45 + 0.55 
0.50 + 0.50 
- 
0.34 + 0.66 

7.8 10-4 

9.3 
1.9 10-3 

1.2 x 10-2 
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